NCERT CBSE Standard 12 General Principles and Processes of Isolation of Elements Chapter 6

Please Visit our new Website here

1-Teacher-3 1-Teacher-5

Learn more at

search for videos in





1-Teacher-15 1-SKM-Class-net-1

Chemistry Physics Mathematics personal tuitions ( also Home Tuitions / Coaching by Home Tutor with personal Attention ) are available in the Bannerghatta Road IIM

( south Bangalore ) region.


Prof. Subhashish and others are teaching ISEET Chemistry, Maths, Physics, AIEEE/IIT-JEE, CET and PU courses

Teacher-1 1-Subhashish-Electrostatics-2

Solutions to Chapter 6 :

Power of makeup Taklu bald fellow with broom


Must see



Surprise Element :
Did you know that IIT JEE 1999 had a Clairaut’s differential equation Question.
How many IIT JEE Guide and Coaching Institutes you attended covered this ?

Dont forget to learn from SKM Classes South Bangalore





1 Periodic trend in Electrode potential-4


8 ape-human 4 computer generated intermediate face


The next chapter Solution is at
The previous chapter Solution is at
The first Chapter Solution is at

1 yello blue schenary painting 1 angry woman face 1 cake face 1 crystal face 1 First walk Romance 1 fossil spherical

1 Jesus Christ most probable face computer generated

1 oil painting 1 Painted face 1 Painting 1 skull fossil 1 towards a cave 1 tree face 1 woman with ghomta



The next chapter Solution is at
The previous chapter Solution is at
The first Chapter Solution is at


Thermodynamics illustrates why only a certain reducing element and a minimum specific temperature are suitable for reduction of a metal oxide to the metal in an extraction.

A few elements like carbon, sulphur, gold and noble gases, occur in free state while others in combined forms in the earth’s crust. The extraction and isolation of an element from its combined form involves various principles of chemistry. A particular element may occur in a variety of compounds. The process of metallurgy and isolation should be such that it is chemically feasible and commercially viable. Still, some general principles are common to all the extraction processes of metals. For obtaining a particular metal, first we look for minerals which are naturally occurring chemical substances in the earth’s crust obtainable by mining. Out of many minerals in which a metal may be found, only a few are viable to be used as sources of that metal. Such minerals are known as ores. Rarely, an ore contains only a desired substance.It is usually contaminated with earthly or undesired materials known as gangue. The extraction and isolation of metals from ores involve the following major steps:
• Concentration of the ore,
• Isolation of the metal from its concentrated ore, and
• Purification of the metal.
The entire scientific and technological process used for isolation of the metal from its ores is known as metallurgy.

In the present Unit, first we shall describe various steps for effective concentration of ores. After that we shall discuss the principles of some of the common metallurgical processes. Those principles shall include the thermodynamic and electrochemical aspects involved in the effective reduction of the concentrated ore to the metal.

6.1 Occurence of Metals

Elements vary in abundance. Among metals, aluminium is the most abundant. It is the third most abundant element in earth’s crust (8.3% approx. by weight). It is a major component of many igneous minerals including mica and clays. Many gemstones are impure forms of Al2O3 and the impurities range from Cr (in ‘ruby’) to Co (in ‘sapphire’). Iron is the second most abundant metal in the earth’s crust. It forms a variety of compounds and their various uses make it a very important element. It is one of the essential elements in biological systems as well. The principal ores of aluminium, iron, copper and zinc have been given in Table 6.1.

Table Table 6.1: Principal Ores of Some Important Metals
Metal Ores Composition
Aluminium BauxiteKaolinite (a form of clay) AlOx(OH)3-2x [where 0 < x < 1]
Iron Haematite
Iron pyrites
Copper Copper pyrites
copper glance
Zinc Zinc blende or sphalerite

For the purpose of extraction, bauxite is chosen for aluminium. For iron, usually the oxide ores which are abundant and do not produce polluting gases (like SO2 that is produced in case iron pyrites) are taken. For copper and zinc, any of the listed ores (Table 6.1) may be used depending upon availability and other relevant factors. Before proceeding for concentration, ores are graded and crushed to reasonable size.

6.2 Concentration of Ore

Removal of the unwanted materials (e.g., sand, clays, etc.) from the ore is known as concentration, dressing or benefaction. It involves several steps and selection of these steps depends upon the differences in physical properties of the compound of the metal present and that of the gangue. The type of the metal, the available facilities and the environmental factors are also taken into consideration. Some of the important procedures are described below.

6.2.1 Hydraulic Washing

This is based on the differences in gravities of the ore and the gangue particles. It is therefore a type of gravity separation. In one such process, an upward strem of running water is used to wash the powedered ore. The lighter gangue particles are washed away and the heavier ores are left behind.

6.2.2 Magnetic Seperation

This is based on differences in magnetic properties of the ore ot the gangue (one of these two) is capable of being attracted by a magnetic field, then such seperations are carried out (e.g. in case of iron ores). The ground ore is carried on a conveyer belt which passes over a magnetic roller (fig.6.1).

6.2.3 Froth Flotation Method

This method has been in use for removing gangue from sulphide ores. in this process, a suspension of the powdered ore is made with water. To it, collectors and forth stabilizers are added. Collectors (e.g., pine oils, fatty acids, xanthates, etc.) enhance non – wettability of the mineral particles and froth stabilisers (e.g. , cresols, aniline) stabilise the forth.

The mineral particles become wet by oils while the gangue particles by water. A ratating paddle agitates the mixture and draws air in it. As a result, forth is formed which carries the mineral particles . The forth is light and is skimmed off. It is then dried for recovery of the ore particles.

Sometimes, it is possible to seperate two sulphide ores by adjusting proportion of oil to water or by using ‘depressants’. For example in case of an ore containing Zns and PbS, the depressant used is NaCN. it selectively prevents ZnS from coming to the forth but allow PbS to come with the forth.

The Innovative Washerwoman

One can do wonders if he or she has a scientific temperament and is attentive to observations. A washerwoman had an innovative mind too. While washing a miner’s Overalls, she noticed that sand and similar dirt fell to the bottom of the washtub. What was peculiar, the copper bearing compounds that had come to the clothes from the mines, were caught in the soapsuds and so tehy came to the top. One of her clients was a chemist, Mrs. Carrie Everson. The washerwoman told her experience to Mrs. Everson. The latter thought that the idea could be used for seperating copper compounds from rocky and earth materials on alrge scale. This way an invention was born. At taht time only those ore were used for extraction of copper, which contained large amounts of the metal. Invention of the Forth Flotation method made copper minning profitable even from the low – grade ores. World production of copper soared and the metal became cheaper.

6.2.4 Leaching

Leaching is often used if the ore is soluble in some suitable solvent. The following examples illustrate the procedure:
(a) Leaching of alumina from bauxite
The principal ore of aluminium, bauxite, usually contains SiO2, iron oxides and titanium oxide (TiO2) as impurities. Concentration is carried out by digesting the powdered ore with a concentrated solution of NaOH at 473 – 523 K and 35 – 36 bar pressure. This way, Al2O3 is leached out as sodium aluminate (and SiO2 too as sodium silicate) leaving the impurities behind:
Al2O3(s) + 2NaOH(aq) + 3H2O(l) → 2Na[Al(OH)4](aq)………..(6.1)
The aluminate in solution is neutralised by passing CO2 gas and hydrated Al2O3 is precipitated. At this stage, the solution is seeded with freshly prepared samples of hydrated Al2O3. which induces the precipitation:
2Na[Al(OH)4](aq) + CO2(g) → Al2O3.xH2O(s) + 2NaHCO3 (aq)……….(6.2)
The sodium silicate remains in the solution and hydrated alumina is filtered, dried and heated to give back pure Al2O3:

(b) Other examples
In the metallurgy of silver and that of gold, the respective metal is leached with a dilute solution of NaCN or KCN in the presence of air (for O2) from which the metal is obtained later by replacement:
4M(s) + 8CN (aq)+ 2H2O(aq) + O2(g) → 4[M(CN)2](aq) + 4OH(aq) (M= Ag or Au)……… (6.4)

2[M(CN)2](aq) + Zn(s) → [Zn(CN)4]2−…………. (6.5)

Intext Question

6.1 Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method?
6.2 What is the significance of leaching in the extraction of aluminium?

6.3 Extraction of Crude Metal From Concentrated Ore

The concentrated ore must be converted into a form which is suitable for reduction. Usually the sulphide ore is converted to oxide before reduction. Oxides are easier to reduce (for the reason see box). Thus isolation of metals from concentrated ore involves two major steps viz.,
(a) conversion to oxide, and
(b) reduction of the oxide to metal.

(a) Conversion to oxide
(i) Calcination: Calcinaton involves heating when the volatile matter escapes leaving behind the metal oxide:

(ii) Roasting: In roasting, the ore is heated in a regular supply of air in a furnace at a temperature below the melting point of the metal. Some of the reactions involving sulphide ores are:
2ZnS + 3O2 → 2ZnO + 2SO2…………(6.9)
2PbS + 3O2 → 2PbO + 2SO2…………(6.10)
2Cu2S + 3O2 → 2Cu2O + 2SO2………..(6.11)

The sulphide ores of copper are heated in reverberatory furnace. If the ore contains iron, it is mixed with silica before heating. Iron oxide ‘slags of ’* as iron silicate and copper is produced in the form of copper matte which contains Cu2S and FeS.
FeO + SiO2 → FeSiO3…………(6.12)
The SO2 produced is utilised for manufacturing H2SO4 .

(b) Reduction of oxide to the metal Reduction of the metal oxide usually involves heating it with some other substance acting as a reducing agent (C or CO or even another metal). The reducing agent (e.g., carbon) combines with the oxygen of the metal oxide.

MxOy + yC → xM + y CO…………(6.13)

Some metal oxides get reduced easily while others are very difficult to be reduced (reduction means electron gain or electronation). In any case, heating is required. To understand the variation in the temperature requirement for thermal reductions (pyrometallurgy) and to predict which element will suit as the reducing agent for a given metal oxide (MxOy), Gibbs energy interpretations are made.

6.4 Thermodynamic Principles of Metallurgy

Some basic concepts of thermodynamics help us in understanding the theory of metallurgical transformations. Gibbs energy is the most significant term here.The change in Gibbs energy, ΔG for any process at any specified temperature, is described by the equation:
ΔG = ΔH – TΔS……………(6.14)
where, ΔH is the enthalpy change and ΔS is the entropy change for the process. For any reaction, this change could also be explained through the equation:

ΔGV = – RTlnK…………….(6.15)

where, K is the equilibrium constant of the ‘reactant – product’ system at the temperature,T. A negative ΔG implies a +ve K in equation 6.15. And this can happen only when reaction proceeds towards products. From these facts we can make the following conclusions:

1. When the value of ΔG is negative in equation 6.14, only then the reaction will proceed. If ΔS is positive, on increasing the temperature (T), the value of TΔS would increase (ΔH < TΔS) and then ΔG will become –ve.

2. If reactants and products of two reactions are put together in a system and the net ΔG of the two possible reactions is –ve, the overall reaction will occur. So the process of interpretation involves coupling of the two reactions, getting the sum of their ΔG and looking for its magnitude and sign. Such coupling is easily understood through Gibbs energy (ΔGV ) vs T plots for formation of the oxides (Fig. 6.4).

Ellingham Diagram

The graphical representation of Gibbs energy was first used by H.J.T.Ellingham. This provides a sound basis for considering the choice of reducing agent in the reduction of oxides. This is known as Ellingham Diagram. Such diagrams help us in predicting the feasibility of thermal reduction of an ore. The criterion of feasibility is that at a given temperature, Gibbs energy of the reaction must be negative.

(a) Ellingham diagram normally consists of plots of ΔfGV vs T for formation of oxides of elements i.e., for the reaction,
2xM(s) + O2(g) → 2MxO(s)

In this reaction, the gaseous amount (hence molecular randomness) is decreasing from left to right due to the consumption of gases leading to a –ve value of ΔS which changes the sign of the second term in equation (6.14). Subsequently ΔG shifts towards higher side despite rising T (normally, ΔG decreases i.e., goes to lower side with increasing temperature). The result is +ve slope in the curve for most of the reactions shown above for formation of MxO(s).

(b) Each plot is a straight line except when some change in phase (s→liq or liq→g) takes place. The temperature at which such change occurs, is indicated by an increase in the slope on +ve side (e.g., in the Zn, ZnO plot, the melting is indicated by an abrupt change in the curve).

(c) There is a point in a curve below which ΔG is negative (So MxO is stable). Above this point, MxO will decompose on its own.

(d) In an Ellingham diagram, the plots of ΔGV for oxidation (and therefore reduction of the corresponding species) of common metals and some reducing agents are given. The values of ΔfGV, etc.(for formation of oxides) at different temperatures are depicted which make the interpretation easy.

(e) Similar diagrams are also constructed for sulfides and halides and it becomes clear why reductions of MxS is difficult. There, the ΔfGV of MxS is not compensated.

Limitations of Ellingham Diagram

1. The graph simply indicates whether a reaction is possible or not i.e., the tendency of reduction with a reducing agent is indicated. This is so because it is based only on the thermodynamic concepts. It does not say about the kinetics of the reduction process (Cannot answer questions like how fast it could be ?).

2. The interpretation of ΔGV is based on K (ΔGV = – RT lnK). Thus it is presumed that the reactants and products are in equilibrium:
MxO + Ared l xM + AOox

This is not always true because the reactant/product may be solid. [However it explains how the reactions are sluggish when every species is in solid state and smooth when the ore melts down.It is interestng to note here that ΔH (enthalpy change) and the ΔS (entropy change) values for any chemical reaction remain nearly constant even on varying temperature. So the only dominant variable in equation(6.14) becomes T. However, ΔS depends much on the physical state of the compound. Since entropy depends on disorder or randomness in the system, it will increase if a compound melts (s→l) or vapourises (l→g) since molecular randomness increases on changing the phase from solid to liquid or from liquid to gas].

The reducing agent forms its oxide when the metal oxide is reduced. The role of reducing agent is to provide ΔG negative and large enough to make the sum of ΔG of the two reactions (oxidation of the reducing agent and reduction of the metal oxide) negative.
As we know, during reduction, the oxide of a metal decomposes:
MxO(s) → xM (solid or liq) + 1/2 O2………….(6.16)

The reducing agent takes away the oxygen. Equation 6.16 can be visualised as reverse of the oxidation of the metal. And then, the ΔfGV value is written in the usual way:

xM(s or l) + 1/2O2(g) → MxO(s) [ΔGV(M,MxO)]………….(6.17)

If reduction is being carried out through equation 6.16, the oxidation of the reducing agent (e.g., C or CO) will be there:

C(s) + 1/2 O2 (g) → CO(g) [ΔG(C, CO)]………….(6.18)

CO(g) + 1/2O2 → CO2(g) [ΔG(CO, CO2)]…………….(6.19)

If carbon is taken, there may also be complete oxidation of the element to CO2:

1/2 C(s) + 1/2 O2(g) → 1/2 CO2(g) [1/2 ΔG(C, CO2)]……….(6.20)

On subtracting equation 6.17 [it means adding its negative or the reverse form as in equation 6.16] from one of the three equations, we get:
MxO(s) + C(s) → xM(s or l) + CO(g)…………..(6.21)
MxO(s) + CO(g) → xM(s or l) + CO2(g)…………….(6.22)
MxO(s) + 1/2 C(s) → xM(s or l) + 1/2 CO2(g)……………..(6.23)

These reactions describe the actual reduction of the metal oxide, MxO that we want to accomplish. The ΔrG values for these reactions in general, can be obtained by similar subtraction of the corresponding ΔfG° values.

As we have seen, heating (i.e., increasing T) favours a negative value of ΔrG° . Therefore, the temperature is chosen such that the sum of ΔrG° in the two combined redox process is negative. In ΔrG° vs T plots, this is indicated by the point of intersection of the two curves (curve for MxO and that for the oxidation of the reducing substance). After that point, the ΔrG value becomes more negative for the combined process including the reduction of MxO. The difference in the two ΔrG° values after that point determines whether reductions of the oxide of the upper line is feasible by the element represented by the lower line. If the difference is large, the reduction is easier.

Example 6.1
Suggest a condition under which magnesium could reduce alumina.
The two equations are:
(a) 4/3 Al + O2 →2/3 Al2O3
(b) 2Mg +O2 → 2MgO
At the point of intersection of the Al2O3 and MgO curves (marked “A” in diagram 6.4), the ΔG° becomes ZERO for the reaction:
2/3 Al2O3 +2Mg → 2MgO + 4/3Al
Below that point magnesium can reduce alumina.

Example 6.2 Although thermodynamically feasible, in practice, magnesium metal is not used for the reduction of alumina in the metallurgy of aluminium. Why ?
Temperatures below the point of intersection of Al2O3 and MgO curves, magnesium can reduce alumina. But the process will be uneconomical.

Example 6.3 Why is the reduction of a metal oxide easier if the metal formed is in liquid state at the temperature of reduction?
The entropy is higher if the metal is in liquid state than when it is in solid state. The value of entropy change (ΔS) of the reduction process is more on +ve side when the metal formed is in liquid state and the metal oxide being reduced is in solid state. Thus the value of ΔG° becomes more on negative side and the reduction becomes easier.

6.4.1 Applications

(a) Extraction of iron from its oxides

Oxide ores of iron, after concentration through calcination/roasting (to remove water, to decompose carbonates and to oxidise sulphides) are mixed with limestone and coke and fed into a Blast furnace from its top. Here, the oxide is reduced to the metal. Thermodynamics helps us to understand how coke reduces the oxide and why this furnace is chosen. One of the main reduction steps in this process is:
FeO(s) + C(s) → Fe(s/l) + CO (g)………………….(6.24)

It can be seen as a couple of two simpler reactions. In one, the reduction of FeO is taking place and in the other, C is being oxidised to CO:
FeO(s) → Fe(s) + 1/2 O (g) [ΔG(FeO, Fe)]…………………….(6.25)
C(s) + 1/2 O (g) → CO (g) [ΔG(C, CO)]………………………(6.26)

When both the reactions take place to yield the equation (6.24), the net Gibbs energy change becomes:
ΔG (C, CO) + ΔG(FeO, Fe) = ΔrG ………………..6.27)

Naturally, the resultant reaction will take place when the right hand side in equation 6.27 is negative. In ΔG° vs T plot representing reaction 6.25, the plot goes upward and that representing the change C→CO
(C,CO) goes downward. At temperatures above 1073K (approx.), the C,CO line comes below the Fe,FeO line [ΔG(C, CO) ΔG(Fe, FeO)]. So in this range, coke will be reducing the FeO and will itself be oxidised to CO. In a similar way the reduction of Fe3O4 and Fe2O3 at relatively lower temperatures by CO can be explained on the basis of lower lying points of intersection of their curves with the CO, CO2 curve in Fig. 6.4.

In the Blast furnace, reduction of iron oxides takes place in different temperature ranges. Hot air is blown from the bottom of the furnace and coke is burnt to give temperature upto about 2200K in the lower portion itself. The burning of coke therefore supplies most of the heat required in the process. The CO and heat moves to upper part of the furnace. In upper part, the temperature is lower and the iron oxides (Fe2O3 and Fe3O4) coming from the top are reduced in steps to FeO. Thus, the reduction reactions taking place in the lower temperature range and in the higher temperature range, depend on the points of
corresponding intersections in the ΔrG° vs T plots. These reactions can be summarised as follows:

At 500 – 800 K (lower temperature range in the blast furnace) –
3 Fe2O3 + CO → 2 Fe3O4 + CO2…………..(6.28)
Fe3O4 + 4 CO → 3Fe + 4 CO2………………..(6.29)
Fe2O3 + CO → 2FeO + CO2…………………..(6.30)
At 900 – 1500 K (higher temperature range in the blast furnace):
C + CO2 → 2CO…………..(6.31)
FeO + CO → Fe + CO2…………..(6.32)
Limestone is also decomposed to CaO which removes silicate impurity of the ore as slag. The slag is in molten state and separates out from iron. The iron obtained from Blast furnace contains about 4% carbon and many impurities in smaller amount (e.g., S, P, Si, Mn). This is known as pig iron and cast into variety of shapes. Cast iron is different from pig iron and is made by melting pig iron with scrap iron and coke using hot air blast. It has slightly lower carbon content (about 3%) and is extremely hard and brittle.

Further Reductions

Wrought iron or malleable iron is the purest form of commercial iron and is prepared from cast iron by oxidising impurities in a reverberatory furnace lined with haematite. This haematite oxidises carbon to carbon monoxide:
Fe2O3 + 3C → 2Fe + 3CO……………..(6.33)

Limestone is added as a flux and sulphur, silicon and phosphorus are oxidised and passed into the slag. The metal is removed and freed from the slag by passing through rollers.

(b) Extraction of copper from cuprous oxide [copper(I) oxide]
In the graph of ΔrG0 vs T for formation of oxides (Fig. 6.4), the Cu2O line is almost at the top. So it is quite easy to reduce oxide ores of copper directly to the metal by heating with coke (both the lines of C, CO and C, CO2 are at much lower positions in the graph particularly after 500 – 600K). However most of the ores are sulphide and some may also contain iron. The sulphide ores are roasted/smelted to give oxides:
2Cu2S + 3O2 → 2Cu2O + 2SO2………………(6.34)
The oxide can then be easily reduced to metallic copper using coke:
Cu2O + C → 2Cu + CO…………….(6.35)

In actual process, the ore is heated in a reverberatory furnace after mixing with silica. In the furnace, iron oxide ‘slags of’ as iron silicate and copper is produced in the form of copper matte. This contains Cu2S and FeS.
FeO + SiO2 → FeSiO3……………..(6.36)
Copper matte is then charged into silica lined convertor. Some silica is also added and hot air blast is blown to convert the remaining FeS, FeO and Cu2S/Cu2O to the metallic copper. Following reactions take place:
2FeS + 3O2 → 2FeO + 2SO2…………(6.37)
FeO + SiO2 → FeSiO3…………..(6.38)
2Cu2S + 3O2 → 2Cu2O + 2SO2……………(6.39)
2Cu2O + Cu2S → 6Cu + SO2……………(6.40)

The solidified copper obtained has blistered appearance due to the evolution of SO2 and so it is called blister copper.

(c) Extraction of zinc from zinc oxide

The reduction of zinc oxide is done using coke. The temperature in this case is higher than that in case of copper. For the purpose of heating, the oxide is made into brickettes with coke and clay.

The metal is distilled off and collected by rapid chilling.

Intext Questions
6.3 The reaction,
Cr2O3 + 2Al → Al2O3 + 2Cr          (ΔG° = – 421 kJ)
is thermodynamically feasible as is apparent from the Gibbs energy value. Why does it not take place at room temperature?
6.4 Is it true that under certain conditions, Mg can reduce Al2O3 and Al can reduce MgO? What are those conditions?

6.5 Electrochemical principles of Metallurgy

We have seen how principles of thermodyamics are applied to pyrometallurgy. Similar principles are effective in the reductions of metal ions in solution or molten state. Here they are reduced by electrolysis or by adding some reducing element.

In the reduction of a molten metal salt, electrolysis is done. Such methods are based on electrochemical principles which could be understood through the equation,
ΔG° = – nE°F…………….(6.42)

here n is the number of electrons and E° is the electrode potential of the redox couple formed in the system. More reactive metals have large negative values of the electrode potential. So their reduction is difficult. If the difference of two E values corresponds to a positive E° and consequently negative ΔG° in equation 6.42, then the less reactive metal will come out of the solution and the more reactive metal will go to the solution, e.g.,

Cu2+(aq) + Fe(s) → Cu(s) + Fe2+(aq)………………(6.43)

In simple electrolysis, the M ions are discharged at negative electrodes (cathodes) and deposited there. Precautions are taken considering the reactivity of the metal produced and suitable materials are used as electrodes. Sometimes a flux is added for making the molten mass more conducting.


In the metallurgy of aluminium, purified Al2O3 is mixed with Na3AlF6 or CaF2 which lowers the melting point of the mix and brings conductivity. The fused matrix is electrolysed. Steel cathode and graphite anode are used. The overall reaction may be taken as:
2Al2O3 + 3C → 4Al + 3CO2……………(6.44)
This process of electrolysis is widely known as Hall-Heroult process.
The electrolysis of the molten mass is carried out in an electrolytic cell using carbon electrodes. The oxygen liberated at anode reacts with the carbon of anode producing CO and CO2. This way for each kg of aluminium produced, about 0.5 kg of carbon anode is burnt away. The electrolytic reactions are:
Cathode: Al3+ (melt) + 3e → Al(l)……………….(6.45)
Anode:C(s) + O (melt) → CO(g) + 2e………………..(6.46)
C(s) + 2O (melt) → CO2 (g) + 4e…………………(6.47)

Copper from Low Grade Ores and Scraps

Copper is extracted by hydrometallurgy from low grade ores. It is leached out using acid or bacteria. The solution containing Cu2+ is treated with scrap iron or H2 (equations 6.42; 6.48).
Cu (aq) + H2(g) → Cu(s) + 2H+ (aq)………………..(6.48)

Example 6.4
At a site, low grade copper ores are available and zinc and iron scraps are also available. Which of the two scraps would be more suitable for reducing the leached copper ore and why?
Zinc being above iron in the electrochemical series (more reactive metal is zinc), the reduction will be faster in case zinc scraps are used. But zinc is costlier metal than iron so using iron scraps will be advisable and advantageous.

6.6 Oxidation Reduction

Besides reductions, some extractions are based on oxidation particularly for non-metals. A very common example of extraction based on oxidation is the extraction of chlorine from brine (chlorine is abundant in sea water as common salt) .
2Cl (aq) + 2H2O(l) → 2OH (aq) + H2(g) + Cl2(g)…………..(6.49)
The ΔG° for this reaction is + 422 kJ. When it is converted to E (using ΔG° = – nE°F), we get E° = – 2.2 V. Naturally, it will require an external e.m.f. that is greater than 2.2 V. But the electrolysis requires an excess potential to overcome some other hindering reactions. Thus, Cl2 is obtained by electrolysis giving out H2 and aqueous NaOH as by-products. Electrolysis of molten NaCl is also carried out. But in that case, Na metal is produced and not NaOH.

As studied earlier, extraction of gold and silver involves leaching the metal with CN . This is also an oxidation reaction (Ag → Ag+ or Au → Au+). The metal is later recovered by displacement method.
4Au(s) + 8CN (aq) + 2H2O(aq) + O2(g) → 4[Au(CN)2] (aq) + 4OH (aq)…………..(6.50)
2[Au(CN)2] (aq) + Zn(s) → 2Au(s) + [Zn(CN)4]2− (aq)………………….(6.51)
In this reaction zinc acts as a reducing agent.

6.7 Refining

A metal extracted by any method is usually contaminated with some impurity. For obtaining metals of high purity, several techniques are
used depending upon the differences in properties of the metal and the impurity. Some of them are listed below.
(a) Distillation
(b) Liquation
(c) Electrolysis
(d) Zone refining
(e) Vapour phase refining
(f ) Chromatographic methods

These are described in detail here.

(a) Distillation
This is very useful for low boiling metals like zinc and mercury. The impure metal is evaporated to obtain the pure metal as distillate.

(b) Liquation
In this method a low melting metal like tin can be made to flow on a sloping surface. In this way it is separated from higher melting

(c) Electrolytic refining
In this method, the impure metal is made to act as anode. A strip of the same metal in pure form is used as cathode. They are put in a suitable electrolytic bath containing soluble salt of the same metal. The more basic metal remains in the solution and the less basic ones go to the anode mud. This process is also explained using the concept of electrode potential, over potential, and Gibbs energy which you have seen in previous sections. The reactions are:
Anode: M → Mn+ + ne
Cathode: Mn+ + ne → M…………….(6.52)

Copper is refined using an electrolytic method. Anodes are of impure copper and pure copper strips are taken as cathode. The electrolyte is acidified solution of copper sulphate and the net result of electrolysis is the transfer of copper in pure form from the anode to the cathode:
Anode: Cu → Cu2+ + 2 e
Cathode: Cu2+ + 2e → Cu………………….(6.53)

Impurities from the blister copper deposit as anode mud which contains antimony, selenium, tellurium, silver, gold and platinum; recovery of these elements may meet the cost of refining. Zinc may also be refined this way.

(d) Zone refining
This method is based on the principle that the impurities are more soluble in the melt than in the solid state of the metal. A circular mobile heater is fixed at one end of a rod of the impure metal (Fig. 6.7). The molten zone moves along with the heater which is moved forward. As the heater moves forward, the pure metal crystallises out of the melt and the impurities pass on into the adjacent molten zone. The process is repeated several times and the heater is moved in the same direction. At one end, impurities get concentrated. This end is cut off. This method is very useful for producing semiconductor and other metals of very high purity, e.g., germanium, silicon, boron, gallium and indium.

(e) Vapour phase refining
In this method, the metal is converted into its volatile compound and collected elsewhere. It is then decomposed to give pure metal. So, the two requirements are:
(i) the metal should form a volatile compound with an available reagent,
(ii) the volatile compound should be easily decomposable, so that the recovery is easy.

Following examples will illustrate this technique.

Mond Process for Refining Nickel: In this process, nickel is heated in a stream of carbon monoxide forming a volatile complex, nickel tetracarbonyl:

The carbonyl is subjected to higher temperature so that it is decomposed giving the pure metal:

van Arkel Method for Refining Zirconium or Titanium:

This method is very useful for removing all the oxygen and nitrogen present in the form of impurity in certain metals like Zr and Ti. The crude metal is heated in an evacuated vessel with iodine. The metal iodide being
more covalent, volatilises:
Zr + 2I2 → ZrI4…………………..(6.56)
The metal iodide is decomposed on a tungsten filament, electrically heated to about 1800K. The pure metal is thus deposited on the
ZrI4 → Zr + 2I2…………………….(6.57)

(f) Chromatographic methods
This method is based on the principle that different components of a mixture are differently adsorbed on an adsorbent. The mixture is put in a liquid or gaseous medium which is moved through the adsorbent. Different components are adsorbed at different levels on the column. Later the adsorbed components are removed (eluted) by using suitable solvents (eluant). Depending upon the physical state of the moving medium and the adsorbent material and also on the process of passage of the moving medium, the chromatographic method* is given the name. In one such method the column of Al2O3 is prepared in a glass tube and the moving medium containing a solution of the components is in liquid form. This is an example of column chromatography. This is very useful for purification of the elements which are available in minute quantities and the impurities are not very different in chemical properties from the element to be purified. There are several chromatographic techniques such as paper chromatography, column chromatography, gas chromatography, etc. Procedures followed in column chromatography have been depicted in Fig. 6.8.

6.8 Uses of Aluminium , copper, Zinc and Iron

Aluminium foils are used as wrappers for chocolates. The fine dust of the metal is used in paints and lacquers. Aluminium, being highly reactive, is also used in the extraction of chromium and manganese from their oxides. Wires of aluminium are used as electricity conductors. Alloys containing aluminium, being light, are very useful.

Copper is used for making wires used in electrical industry and for water and steam pipes. It is also used in several alloys that are rather tougher than the metal itself, e.g., brass (with zinc), bronze (with tin) and coinage alloy (with nickel).

Zinc is used for galvanising iron. It is also used in large quantities in batteries, as a constituent of many alloys, e.g., brass, (Cu 60%, Zn 40%) and german silver (Cu 25-30%, Zn 25-30%, Ni 40–50%). Zinc dust is used as a reducing agent in the manufacture of dye-stuffs, paints, etc.

Cast iron, which is the most important form of iron, is used for casting stoves, railway sleepers, gutter pipes , toys, etc. It is used in the manufacture of wrought iron and steel. Wrought iron is used in making anchors, wires, bolts, chains and agricultural implements. Steel finds a number of uses. Alloy steel is obtained when other metals are added to it. Nickel steel is used for making cables, automobiles and aeroplane parts, pendulum, measuring tapes, chrome steel for cutting tools and crushing machines, and stainless steel for cycles, automobiles, utensils, pens, etc.

Metals are required for a variety of purposes. For this, we need their extraction from the minerals in which they are present and from which their extraction is commercially feasible.These minerals are known as ores. Ores of the metal are associated with many impurities. Removal of these impurities to certain extent is achieved in concentration steps. The concentrated ore is then treated chemically for obtaining the metal. Usually the metal compounds (e.g., oxides, sulphides) are reduced to the metal. The reducing agents used are carbon, CO or even some metals. In these reduction processes, the thermodynamic and electrochemical concepts are given due consideration. The metal oxide reacts with a reducing agent; the oxide is reduced to the metal and the reducing agent is oxidised. In the two reactions, the net Gibbs energy change is negative, which becomes more negative on raising the temperature. Conversion of the physical states from solid to liquid or to gas, and formation of gaseous states favours decrease in the Gibbs energy for the entire system. This concept is graphically displayed in plots of ΔG° vs T (Ellingham diagram) for such oxidation/reduction reactions at different temperatures. The concept of electrode potential is useful in the isolation of metals (e.g., Al, Ag, Au) where the sum of the two redox couples is +ve so that the Gibbs energy change is negative. The metals obtained by usual methods still contain minor impurities. Getting pure metals require refining. Refining process depends upon the differences in properties of the metal and the impurities. Extraction of aluminium is usually carried out from its bauxite ore by leaching it with NaOH. Sodium aluminate, thus formed, is separated and then neutralised to give back the hydrated oxide, which is then electrolysed using cryolite as a flux. Extraction of iron is done by reduction of its oxide ore in blast furnace. Copper is extracted by smelting and heating in a reverberatory furnace. Extraction of zinc from zinc oxides is done using coke. Several methods are employed in refining the metal. Metals, in general, are very widely used and have contributed significantly in the development of a variety of industries.

A Summary of the Occurrence and Extraction of some Metals is Presented in the following Table
Metal Occurrence Common method of extraction Remarks
Aluminium 1. Bauxite, Al2O3.xH2O2. Cryolite, Na3AlF6 Electrolysis of Al2O3 dissolved in molten Na3AlF6 For the extraction, a good source of electricity is required.
Iron 1. Haematite, Fe2O3 2. Magnetite, Fe3O4 Reduction of the oxide with CO and coke in Blast furnace Temperature approaching 2170 K is required.
Copper 1. Copper pyrites, CuFeS22. copper glance, Cu2S3. malachite, CuCO3.Cu(OH)24. cuprite, Cu2O Roasting of sulphide partially and reduction It is self reduction in a specially designed converter. The reduction takes place easily. Sulphuric acid leaching is also used in hydrometallurgy from low grade ores.
Zinc Zinc blende or sphalerite, ZnS2. Calamine, ZnCO33. Zincite, ZnO Roasting followed by reduction with coke The metal may be purified by fractional distillation.

6.1 Copper can be extracted by hydrometallurgy but not zinc. Explain.
6.2 What is the role of depressant in froth floatation process?
6.3 Why is the extraction of copper from pyrites more difficult than that from its oxide ore through reduction?
6.4 Explain: (i) Zone refining (ii) Column chromatography.
6.5 Out of C and CO, which is a better reducing agent at 673 K ?
6.6 Name the common elements present in the anode mud in electrolytic refining of copper. Why are they so present ?
6.7 Write down the reactions taking place in different zones in the blast furnace during the extraction of iron.
6.8 Write chemical reactions taking place in the extraction of zinc from zinc blende.
6.9 State the role of silica in the metallurgy of copper.
6.10 What is meant by the term “chromatography”?
6.11 What criterion is followed for the selection of the stationary phase in chromatography?
6.12 Describe a method for refining nickel.
6.13 How can you separate alumina from silica in a bauxite ore associated with silica? Give equations, if any.
6.14 Giving examples, differentiate between ‘roasting’ and ‘calcination’.
6.15 How is ‘cast iron’ different from ‘pig iron”?
6.16 Differentiate between “minerals” and “ores”.
6.17 Why copper matte is put in silica lined converter?
6.18 What is the role of cryolite in the metallurgy of aluminium?
6.19 How is leaching carried out in case of low grade copper ores?
6.20 Why is zinc not extracted from zinc oxide through reduction using CO?
6.21 The value of ΔfG0 for formation of Cr2O3 is – 540 kJmol−1 and that of Al2O3 is – 827 kJmol−1. Is the reduction of Cr2O3 possible with Al ?
6.22 Out of C and CO, which is a better reducing agent for ZnO ?
6.23 The choice of a reducing agent in a particular case depends on thermodynamic factor. How far do you agree with this statement? Support your opinion with two examples.
6.24 Name the processes from which chlorine is obtained as a by-product. What will happen if an aqueous solution of NaCl is subjected to electrolysis?
6.25 What is the role of graphite rod in the electrometallurgy of aluminium?
6.26 Outline the principles of refining of metals by the following methods:
(i) Zone refining
(ii) Electrolytic refining
(iii) Vapour phase refining
6.27 Predict conditions under which Al might be expected to reduce MgO.
(Hint: See Intext question 6.4)

Answers to Some Intext Questions

6.1 Ores in which one of the components (either the impurity or the actual ore) is magnetic can be concentrated, e.g., ores containing iron (haematite, magnetite, siderite and iron pyrites).
6.2 Leaching is significant as it helps in removing the impurities like SiO2, Fe2O3, etc. from the bauxite ore.
6.3 Certain amount of activation energy is essential even for such reactions which are thermodynamically feasible, therefore heating is required.
6.4 Yes, below 1350°C Mg can reduce Al2O3 and above 1350°C, Al can reduce MgO. This can be inferred from ΔGV Vs T plots (Fig. 6.4).

I. Multiple Choice Questions (Type-I)

1. In the extraction of chlorine by electrolysis of brine ____________.

(i) oxidation of Cl ion to chlorine gas occurs.
(ii) reduction of Cl ion to chlorine gas occurs.
(iii) For overall reaction ΔGΘ has negative value.
(iv) a displacement reaction takes place.

2. When copper ore is mixed with silica, in a reverberatory furnace copper matte is produced. The copper matte contains ____________.

(i) sulphides of copper (II) and iron (II)
(ii) sulphides of copper (II) and iron (III)
(iii) sulphides of copper (I) and iron (II)
(iv) sulphides of copper (I) and iron (III)

3. Which of the following reactions is an example of autoreduction?

(i) Fe3O4 + 4CO → 3Fe + 4CO2
(ii) Cu2O + C → 2Cu + CO
(iii) Cu2+ (aq) + Fe (s) → Cu (s) + Fe2+ (aq)
(iv) Cu2O +12Cu2S → 3Cu +12SO2

4. A number of elements are available in earth’s crust but most abundant elements are ____________.

(i) Al and Fe
(ii) Al and Cu
(iii) Fe and Cu
(iv) Cu and Ag

5. Zone refining is based on the principle that ___________.

(i) impurities of low boiling metals can be separated by distillation.
(ii) impurities are more soluble in molten metal than in solid metal.
(iii) different components of a mixture are differently adsorbed on an adosrbent.
(iv) vapours of volatile compound can be decomposed in pure metal.

6. In the extraction of copper from its sulphide ore, the metal is formed by the reduction of Cu2+O with

(i) FeS
(ii) CO
(iii) Cu2+S
(iv) SO2+

7. Brine is electrolysed by using inert electrodes. The reaction at anode is ________.

(i) Cl(aq.) → 12Cl2+(g) + e ; Cell EΘ = 1.36V
(ii) 2H2O(l ) → O2(g) + 4H+ + 4e ; Cell EΘ = 1.23V
(iii) Na+(aq.) + e → Na(s) ; Cell EΘ = 2.71V
(iv) H+(aq.) + e → 12H2(g) ; Cell EΘ = 0.00V

8. In the metallurgy of aluminium ________________.

(i) Al3+ is oxidised to Al (s).
(ii) graphide anode is oxidised to carbon monoxide and carbon dioxide.
(iii) oxidation state of oxygen changes in the reaction at anode.
(iv) oxidation state of oxygen changes in the overall reaction involved in the process.

9. Electrolytic refining is used to purify which of the following metals?

(i) Cu and Zn
(ii) Ge and Si
(iii) Zr and Ti
(iv) Zn and Hg

10. Extraction of gold and silver involves leaching the metal with CN ion. The metal is recovered by ________________.

(i) displacement of metal by some other metal from the complex ion.
(ii) roasting of metal complex.
(iii) calcination followed by roasting.
(iv) thermal decomposition of metal complex.
Note : Answer the questions 11-13 on the basis of Fig. 6.1.

11. Choose the correct option of temperature at which carbon reduces FeO to iron and produces CO.

(i) Below temperature at point A.
(ii) Approximately at the temperature corresponding to point A.
(iii) Above temperature at point A but below temperature at point D.
(iv) Above temperature at point A.

12. Below point ‘A’ FeO can ______________.

(i) be reduced by carbon monoxide only.
(ii) be reduced by both carbon monoxide and carbon.
(iii) be reduced by carbon only.
(iv) not be reduced by both carbon and carbon monoxide.

13. For the reduction of FeO at the temperature corresponding to point D, which of the following statements is correct?

(i) ΔG value for the overall reduction reaction with carbon monoxide iszero.
(ii) ΔG value for the overall reduction reaction with a mixture of 1 mol carbon and 1 mol oxygen is positive.
(iii) ΔG value for the overall reduction reaction with a mixture of 2 mol carbon and 1 mol oxygen will be positive.
(iv) ΔG value for the overall reduction reaction with carbon monoxide is negative.

II. Multiple Choice Questions (Type-II)

Note : In the following questions two or more options may be correct.

14. At the temperature corresponding to which of the points in Fig.6.1, FeO will be reduced to Fe by coupling the reaction 2FeO ⎯→ 2Fe + O2 with all of the following reactions?

(a) C + O2 → CO2 (b) 2C + O2 → 2CO and (c) 2CO + O2 → 2CO2

(i) Point A
(ii) Point B
(iii) Point D
(iv) Point E

15. Which of the following options are correct?

(i) Cast iron is obtained by remelting pig iron with scrap iron and coke using hot air blast.
(ii) In extraction of silver, silver is extracted as cationic complex.
(iii) Nickel is purified by zone refining.
(iv) Zr and Ti are purified by van Arkel method.

16. In the extraction of aluminium by Hall-Heroult process, purified Al2O3 is mixed with CaF2 to

(i) lower the melting point of Al2O3.
(ii) increase the conductivity of molten mixture.
(iii) reduce Al3+ into Al(s).
(iv) acts as catalyst.

17. Which of the following statements is correct about the role of substances added in the froth floation process?

(i) Collectors enhance the non-wettability of the mineral particles.
(ii) Collectors enhance the wettability of gangue particles.
(iii) By using depressants in the process two sulphide ores can be separated.
(iv) Froth stabilisers decrease wettability of gangue.

18. In the Froth Floatation process, zinc sulphide and lead sulphide can be separated by ______________.

(i) using collectors.
(ii) adjusting the proportion of oil to water.
(iii) using depressant.
(iv) using froth stabilisers.

19. Common impurities present in bauxite are ____________.

(i) CuO
(ii) ZnO
(iii) Fe2O3
(iv) SiO2

20. Which of the following ores are concentrated by froth floation?

(i) Haematite
(ii) Galena
(iii) Copper pyrites
(iv) Magnetite

21. Which of the following reactions occur during calcination?

(i) CaCO3 → CaO + CO2
(ii) 2FeS2 + 11/2O2 → Fe2O3 + 4SO2
(iii) Al2O3.x H2O → Al2O3 + x H2O
(iv) ZnS + 3/2 O2 → ZnO + SO2

22. For the metallurgical process of which of the ores calcined ore can be reduced by carbon?

(i) haematite
(ii) calamine
(iii) iron pyrites
(iv) sphalerite

23. The main reactions occurring in blast furnace during extraction of iron from haematite are ________.

(i) Fe2O3 + 3CO → 2Fe + 3CO2
(ii) FeO + SiO2 → FeSiO3
(iii) Fe2O3 + 3C → 2Fe + 3CO
(iv) CaO + SiO2 → CaSiO3

24. In which of the following method of purification, metal is converted to its volatile compound which is decomposed to give pure metal?

(i) heating with stream of carbon monoxide.
(ii) heating with iodine.
(iii) liquation.
(iv) distillation.

25. Which of the following statements are correct?

(i) A depressant prevents certain type of particle to come to the froth.
(ii) Copper matte contains Cu2S and ZnS.
(iii) The solidified copper obtained from reverberatory furnace has blistered appearance due to evolution of SO2 during the extraction.
(iv) Zinc can be extracted by self-reduction.

26. In the extraction of chlorine from brine _____________.

(i) ΔGΘ for the overall reaction is negative.
(ii) ΔGΘ for the overall reaction is positive.
(iii) EΘ for overall reaction has negative value.
(iv) EΘ for overall reaction has positive value.

III. Short Answer Type

27. Why is an external emf of more than 2.2V required for the extraction of Cl2 from brine?
28. At temperatures above 1073K coke can be used to reduce FeO to Fe. How can you justify this reduction with Ellingham diagram?
29. Wrought iron is the purest form of iron. Write a reaction used for the preparation of wrought iron from cast iron. How can the impurities of sulphur, silicon and phosphorus be removed from cast iron?
30. How is copper extracted from low grade copper ores?
31. Write two basic requirements for refining of a metal by Mond process and by Van Arkel Method.
32. Although carbon and hydrogen are better reducing agents but they are not used to reduce metallic oxides at high temperatures. Why?
33. How do we separate two sulphide ores by Froth Floatation Method? Explain with an example.
34. The purest form of iron is prepared by oxidising impurities from cast iron in a reverberatory furnace. Which iron ore is used to line the furnace? Explain by giving reaction.
35. The mixture of compounds A and B is passed through a column of Al2O3 by using alcohol as eluant. Compound A is eluted in preference to compound B. Which of the compounds A or B, is more readily adsorbed on the column?
36. Why is sulphide ore of copper heated in a furnace after mixing with silica?
37. Why are sulphide ores converted to oxide before reduction?
38. Which method is used for refining Zr and Ti? Explain with equation.
39. What should be the considerations during the extraction of metals by electrochemical method?
40. What is the role of flux in metallurgical processes?
41. How are metals used as semiconductors refined? What is the principle of the method used?
42. Write down the reactions taking place in Blast furnace related to the metallurgy of iron in the temperature range 500-800 K.
43. Give two requirements for vapour phase refining.
44. Write the chemical reactions involved in the extraction of gold by cyanide process. Also give the role of zinc in the extraction.

IV. Matching Type

Note : Match the items given in Column I and Column II in the following questions.

45. Match the items of Column I with items of Column II and assign the correct code:

Column I Column II
(A) Pendulum (1) Chrome steel
(B) Malachite (2) Nickel steel
(C) Calamine (3) Na3AlF6
(D) Cryolite (4) CuCO3.Cu (OH)2
(5) ZnCO3

Code :

(i) A(1) B(2) C(3) D(4)
(ii) A(2) B(4) C(5) D(3)
(iii) A(2) B(3) C(4) D(5)
(iv) A(4) B(5) C(3) D(2)

46. Match the items of Column I with the items of Column II and assign the correct code :

Column I Column II
(A) Coloured bands (1) Zone refining
(B) Impure metal to volatile complex (2) Fractional distillation
(C) Purification of Ge and Si (3) Mond Process
(D) Purification of mercury (4) Chromatography
(5) Liquation

Code :

(i) A(1) B(2) C(4) D(5)
(ii) A(4) B(3) C(1) D(2)
(iii) A(3) B(4) C(2) D(1)
(iv) A(5) B(4) C(3) D(2)

47. Match items of Column I with the items of Column II and assign the correct code :

Column I Column II
(A) Cyanide process (1) Ultrapure Ge
(B) Froth Floatation Process (2) Dressing of ZnS
(C) Electrolytic reduction (3) Extraction of Al
(D) Zone refining (4) Extraction of Au
(5) Purification of Ni

Code :

(i) A(4) B(2) C(3) D(1)
(ii) A(2) B(3) C(1) D(5)
(iii) A(1) B(2) C(3) D(4)
(iv) A(3) B(4) C(5) D(1)

48. Match the items of Column I with the items of Column II and assign the correct code :

Column I Column II
(A) Sapphire (1) Al2O3
(B) Sphalerite (2) NaCN
(C) Depressant (3) Co
(D) Corundum (4) ZnS
(5) Fe2O3

Code :

(i) A(3) B(4) C(2) D(1)
(ii) A(5) B(4) C(3) D(2)
(iii) A(2) B(3) C(4) D(5)
(iv) A(1) B(2) C(3) D(4)

49. Match the items of Column I with items of Column II and assign the correct code :

Column I Column II
(A) Blisterred Cu (1) Aluminium
(B) Blast furnace (2) 2Cu2O + Cu2S → 6Cu + SO2
(C) Reverberatory furnace (3) Iron
(D) Hall-Heroult process (4) FeO + SiO2 → FeSiO3
(5) 2Cu2S + 3O2 → 2Cu2 + 2SO2

Code :

(i) A(2) B(3) C(4) D(1)
(ii) A(1) B(2) C(3) D(5)
(iii) A(5) B(4) C(3) D(2)
(iv) A(4) B(5) C(3) D(2)

V. Assertion and Reason Type

Note : In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Both assertion and reason are true and reason is the correct explanation of assertion.
(ii) Both assertion and reason are true but reason is not the correct explanation of assertion.
(iii) Assertion is true but reason is false.
(iv) Assertion is false but reason is true.
(v) Assertion and reason both are wrong.

50. Assertion : Nickel can be purified by Mond process.
Reason : Ni (CO)4 is a volatile compound which decomposes at 460K to give pure Ni.

51. Assertion : Zirconium can be purificed by Van Arkel method.
Reason : ZrI4 is volatile and decomposes at 1800K.

52. Assertion : Sulphide ores are concentrated by Froth Flotation method.
Reason : Cresols stabilise the froth in Froth Flotation method.

53. Assertion : Zone refining method is very useful for producing semiconductors.
Reason : Semiconductors are of high purity.

54. Assertion : Hydrometallurgy involves dissolving the ore in a suitable reagent followed by precipitation by a more electropositive metal.
Reason : Copper is extracted by hydrometallurgy.

VI. Long Answer Type

55. Explain the following :
(a) CO2 is a better reducing agent below 710K whereas CO is a better reducing agent above 710K.
(b) Generally sulphide ores are converted into oxides before reduction.
(c) Silica is added to the sulphide ore of copper in the reverberatory furnace.
(d) Carbon and hydrogen are not used as reducing agents at high temperatures.
(e) Vapour phase refining method is used for the purification of Ti.


I. Multiple Choice Questions (Type-I)

1. (iii)     2. (iii)     3. (iv)     4. (i)     5. (ii)     6. (iii)     7. (i)     8. (ii)     9. (i)     10. (i)     11. (iv)     12. (i)     13. (i)

II. Multiple Choice Questions (Type-II)

14. (ii), (iv)     15. (i), (iv)     16. (i), (ii)     17. (i), (iii)     18. (ii), (iii)     19. (iii), (iv)     20. (ii), (iii)     21. (i), (iii)     22. (i), (ii)     23. (i), (iv)     24. (i), (ii)     25. (i), (iii)     26. (ii), (iii)

III. Short Answer Type

27. For the reaction
2Cl(aq) + 2H2O (l) → 2OH(aq)+ H(g)+Cl(g)

Value of ΔGΘ is + 422kJ. Using the equation ΔGΘ = – nFEΘ the value of EΘ comes out to be –2.2V. Therefore extraction of Cl2 from brine will require an external emf of greater than 2.2V.

28. As per Ellingham diagram at temperatures greater than 1073 K ΔG(C, CO) < ΔG(Fe, FeO). Hence coke can reduce FeO to Fe.
29. Fe2O3 + 3C → 2Fe + 3CO
Limestone is added as flux and sulphur, silicon and phosphorus change to their oxides and pass into the slag.

30. Copper is extracted by hydrometallurgy from low grade copper ores. It is leached out using acid or bacteria. The solution containing Cu2+ is treated with scrap iron, Zn or H2.

Cu2+(aq) + H2(g) → Cu(s)+ 2H+ (aq)
Cu2+ + Fe(s) →Fe2+(aq)+ Cu(s)

31. Basic requirements for both processes are :
(i) The metal should form a volatile compound with an available reagent.
(ii) The volatile compound should be easily decomposable, so that recovery of metal is easy.

32. It is because at high temperature carbon and hydrogen react with metals to form carbides and hydrides respectively.

33. Two sulphide ores can be separated by adjusting proportion of oil to water or by using depressants. For example, in the case of an ore containing ZnS and PbS, the depressant NaCN is used. It forms complex with ZnS and prevents it from coming with froth but PbS remains with froth.
34. Haematite
Fe2O3 + 3C → 2Fe + 3CO
35. Since compound ‘A’ comes out before compound ‘B’, the compound ‘B’ is more readily adsorbed on column.
36. Iron oxide present as impurity in sulphide ore of copper forms slag which is iron silicate and copper is produced in the form of copper matte.
FeO + SiO2 → FeSiO3

37. Sulphides are not reduced easily but oxides are easily reduced.
38. van Arkel method is used for refining Zr and Ti. In this method crude metal is heated with iodine.
Zr + 2I2 → ZrI4

39. Generally two things are considered so that proper precautions can be taken.
(i) reactivity of metal produced.
(ii) suitability of electrodes.
40. Flux is used for making the molten mass more conducting.
41. Semiconducting metal is produced by zone refining method which is based on the principle that the impurities are more soluble in melt than in the solid state of metals.
42. 3Fe2O3 + CO → 2Fe3O4 + CO2
Fe3O4 + 4CO → 3Fe + 4CO2
Fe2O3 + CO → 2FeO + CO2

43. (i) The metal should form a volatile compound with available reagent.
(ii) The volatile compound should be easily decomposable so that the recovery is easy.

44. 4Au (s) + 8CN(aq) + 2H2O (aq) + O2 (g) → 4 [Au (CN)2 (aq) + 4OH (aq)
2[Au(CN)2](aq) + Zn(s) → 2Au(s) + [Zn(CN)4]2–(aq)
In this reaction zinc acts as a reducing agent.

IV. Matching Type

45. (ii) 46. (ii) 47. (i) 48. (i) 49. (i)

V. Assertion and Reason Type

50. (i) 51. (i) 52. (ii) 53. (ii) 54. (ii)

VI. Long Answer Type

55. (a) Hint : Use Ellingham diagram
(b) Hint : Oxides are easier to reduce. See Ellingham diagram.
(c) Hint : Sulphide ore of copper contains iron as impurity which is removed as iron silicate (slag)
FeO + SiO2 → FeSiO3

(d) Hint : Carbon and hydrogen react with metals at high temperature to form carbides and hydrides respectively.
(e) Hint : Ti reacts with iodine to form volatile TiI4 which decomposes at high temperature to give extra pure titanium.


Simplified Knowledge Management Classes

Must see
Do you want to make money working at home ?

search for videos in

you will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.



The following Videos are available for you ( As of Now ). These explain tricky Physics and Mathematics Numericals.

Eventually I will try to give Videos for full course here for you.

These covers PU ( Pre University courses, school / college ) courses, IIT JEE, AIEEE ( All India Engineering Entrance Examination ) , CET ( Combined Engineering Test ), AIPMT ( All India Pre Medical Test ), ISc ( Intermediate Science / Indian School Certificate Exam ), CBSE ( Central Board Secondary Exam ), Roorkey Joint Entrance Test Questions ( Discontinued since 2002 ), APhO ( Asian Physics Olympiad ), IPhO ( International Physics Olympiad ), IMO ( International Mathematics Olympiad ) , NSEP ( National Standard Exam in Physics ), RMO ( Regional Math Olympiad , India ), INMO ( Indian National Maths Olympiad ), Irodov Solutions, Prof. H C Verma ( Concepts of Physics ) Solutions etc.

( You can see the history of Indian Participation in various Olympiads at -> )

[ In each of these videos there is at-least 1 or more errors. Please tell me about those ]

search for videos in
You should get to see all the Uploaded videos. Though we have many more study videos.

Thanks and Regards
Zookeeper ;-D Subhashish Chattopadhyay

[ I suggest you see the videos starting with 1- first then starting with 2- ….. in that sequence. ]

[ Tell your friends about this link if you liked the videos ]

In case of doubts or suggestions, Please send me email at

search for videos in

Answers to -> Frequently Asked Questions ( FAQ ) [ commonly asked intelligent Questions 🙂 ]

1 ) How do I prepare for IIT ?

Ans : – See the videos made by me ( search for videos in
Though we have many more which have not been uploaded ). While watching the videos, take notes and try to solve the problems yourself by pausing the video. Tell me if any calculation is wrong. See the videos with 1- first then 2- and so on. Write to IAPT Kothrud, Pune office to buy ( 150 Rs approx ) the book with previous papers of NSEP ( National Standard Exam in Physics – The 1st level ), INPhO ( Indian National Physics Olympiad – 2nd level ). Prepare with these and see how much you are scoring. You can guess your ALL INDIA rank easily from NSEP, and INPhO rank. Since 1998 the IIT JEE toppers have been mostly representing India in IPhO.

2 ) Which codec and Player do I use to see the videos ?

Ans : – You can use GOM Player, or VLC Player. You have to have good speakers with filters or good earphones with filters. We have checked mostly it is OK with these. ( If you are depending only on your embedded speakers of computer /screen / keyboard then there may be extra distortions. As these speakers are often not of good Quality. Also install latest KL Codecs ) In any case reduce the volume see the board, imagine sitting in the last bench and solving the problems of your own. See if your solution differs anywhere with the scribbles on the board.

3 ) Why are you giving these ( high Quality ) lecture for free ?

Ans : Well there are lot of good things free in this world. Linux, My-SQL, Open-Office ….. Go to sourceforge and get thousands of high quality software free along with source code. Yes all officially free …. Why do you think Richard Stallman, Zimmerman, ….. etc are considered Guru philosophers ? In Punjab and Gurudwaras worldwide there are so many Langars where you get better food than Restaurants. ….. why ? Why do you have Dharmasalas and subsidized rest rooms near hospitals / Famous Temples / various places ? in Iftar party anyone can eat for free …. why ?

I am teaching since 1989 I have observed most students can do much better if they have the self motivation to solve and practice. Cheap books are available in second hand bookstalls, where you get thousands of Numericals to solve ….. but most students will like to blow their time going and coming for tuition, travel time …. TV for hours and hours watching cricket / Tennis games, playing computer games …. My free lectures are not going to make much difference in spending of unnecessary money for coaching ….. I know very well , how much people enjoy …. ! spending unnecessarily !!

Do you know that there are NO poor / needy students in Bangalore.

Sometime back I had tried to teach for IIT JEE FREE. Discussed with a few NGOs and social service guys. Arranged rooms but got only 1 student. We had informed many people in many ways to inform students …. We did not get students who are ready to learn for free. So I am sure these lectures are NOT FREE. If anyone learns from these, s/he changes and that’s the gain / benefit. This change ( due to learning ) is very costly …. Most do not want to learn ………..

search for videos in
You will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.


4 ) How can I get all your lectures ?

Ans : – Apart from my lectures there are approx 700 GB of PCM ( Phy, Chem, Math ) lectures. It takes approx 3 years of continuous download from scattered sources. I have ( 20,000 )Thousands of these. You can take ALL of them from me in an external 1 TB hard disk, instead of spending so much money and time again for downloading. These cover ( by Various Professors ) everything of Chemistry, Physics, Maths… Lot of this is from outside India … as foreigners have much wider heart than Indians ( as most of GNU / open source software have been developed by Non-Indians ). I observed the gaps in these videos, and thus I am solving IIT, APhO, Roorkey, IPhO Numericals. Videos made by me along with these videos gives a complete preparation.

Send me a mail at to contact me.

search for videos in
You will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.


5 ) How do you get benefited out of this ?

Ans :- If anyone learns we all will have better people in this world. I will have better “ YOU “.

6 ) Why do you call yourself a Zookeeper ?

Ans :- This is very nicely explained at


7 ) Where do you stay ?

Ans :- Presently I am in Bangalore.


8 ) If I need videos in a few topics can you make them for me ?

Ans :- We actively answers doubts at doubtpoint.
In case you appreciate our time and efforts involved in answering complicated Questions, then get Quality answers at doubtpoint.


9 ) Why did you write an article saying there are No Poor students ?

Ans :- There are lots of NGOs and others working for rural / poor children education at lower classes. While very less effort is on for std 9 till 12. Also see the answer in question number ( 3 ) above. In more than 2 decades of teaching I never met a Poor child who was seriously interested in ( higher ) studies. As I have a mind / thinking of a ” Physicist “, I go by ” Experimental Observation “.

It is not about what is being said about poor in media / TV etc, or ” what it should be ” ( ? ) …. It is about what I see happening. Also to add ( confuse ? you more )…. You must be knowing that in several states over many years now girl students have better ( by marks as well as by pass percentage ) result in std 10 / Board Exams….. well but NEVER a girl student came FIRST in IIT JEE … why ? [ The best rank by a Girl student is mostly in 2 digits, very rarely in single digit ] ????? So ????


10 ) How much do I have to study to make it to IIT ?

Ans :- My experience of Teaching for IIT JEE since 1989, tells me, Total 200 hours per subject ( PCM ) is sufficient. If you see my Maths and Physics videos, each subject is more than 200 hours. So if someone sees all the videos diligently, takes notes and remembers, …… Done.


11 ) What is EAMCET ?

Ans :- Engineering Agriculture and Medicine Common Entrance Test is conducted by JNT University Hyderabad on behalf of APSCHE. This examination is the gateway for entry into various professional courses offered in Government/Private Colleges in Andhra Pradesh.

12 ) In your videos are you covering other Exams apart from IIT ?

Ans : – Yes. See many videos made by solving problems of MPPET, Rajasthan / J&K CET, UPSEAT ( UPES Engineering Aptitude Test ), MHCET, BCECE ( Bihar Combined Entrance Competitive Examination Board ), WB JEE etc


13 ) What is SCRA ?

Ans : – Special Class Railway Apprentice (SCRA) exam is conducted by Union Public Service Commission (UPSC) board, for about 10 seats.That translates into an astonishing ratio of 1 selection per 10,000 applicants. The SCRA scheme was started in 1927 by the British, to select a handful of most intelligent Indians to assist them in their Railway Operations, after training at their Railway’s largest workshop, i.e. Jamalpur Workshop, and for one year in United Kingdom. The selected candidates were required to appear in the Mechanical Engineering Degree Examination held by Engineering Council (London).

Thanks for your time. To become my friend in google+ ( search me as and send friend request )

The following video is a must see for full CO2 cycle, plates of Earth, Geological activities, stability of weather

Article in Nature says CO2 increase is good for the trees

BBC documentary Crescent and Cross shows the 1000 years of fight between Christians and Muslims. Millions have been killed in the name of Religion. To decided whose GOD is better, and which GOD to follow. The fight continues.

Summary of Women

The Virus of Faith

The God delusion

cassiopeia facts about evolution

Intermediate Fossil records shown and explained nicely Fossils, Genes, and Embryos

The Rise Of Narcissism In Women

13 type of women whom you should never court

Media teaching Misandry in India

Summary of problems with women

Eyeopener men ? women only exists

Each of you is an Activist in some way or other. You are trying to propagate those thoughts, ideas that you feel concerned / excited about.

Did you analyze your effectiveness ?

Culturomics can help you

see how biased women are. Experimental proof. Women are happy when they see another woman is beating a man ( see how women misbehave with men )


see detailed statistics at

An eye opener in Misandry

My sincere advice would be to be EXTREMELY careful ( and preferably away ) of girls. As girls age; statistically certain behavior in them has been observed. Most Male can NOT manage those behaviors… Domestic violence, divorce etc are rising very fast. Almost in all cases boys / males are HUGE loosers. Be extremely choosy ( and think from several angles ) before even talking to a girl.


How women manipulate men

Gender Biased Laws in India


Violence against Men


Only men are victimised

Men are BETTER than women



Male Psychology

Women are more violent than men


In the year 2010, 168 men ended their lives everyday ( on average ). More husbands committed suicide than wives.

It is EXTREMELY unfortunate that media projects men as fools, women as superiors, Husbands as servants, and replaceable morons. In ad after ad worldwide from so many companies, similar msg to disintegrate the world is being bombarded. It is highly unacceptable misandry


It is NOT at all funny that media shows violence against MEN. Some advertisers are trying to create a new ” Socially acceptable culture ” of slapping Men ( by modern city women ). We ( all men ) take objection to these advertisements.
We oppose this Misandry bad culture. Please share to increase awareness against Men bashing


Think what are you doing … why are you doing ?

Every Man must know this …

Manginas, White Knights, & Other Chivalrous Dogs

: ****__********__***
…….. (””(`-“’´´-´)””)
……##### u r #####
……..### SWEET. ###



key words

IIT, JEE,IITJEE, Home Tuition available small groups students IB International Baccalaureate Programme IGCSE International General Certificate Secondary Education ISc Indian School Certificate ICSE Indian Certificate of Secondary Education CBSE Central Board of Secondary Education The Schools offering IB International Baccalaureate Programme Bangalore International School Geddalahalli Hennur Bagalur Road Kothanur Post Bengaluru India 560 077 Stonehill International School, 1st Floor, Embassy Point #150, Infantry Road Bengaluru 560 001 Stonehill International School 259/333/334/335, Tarahunise Post Jala Hobli, Bengaluru North 562157 Candor International School Begur – Koppa Road, Hullahalli, Off Bannerghatta Road, Near Electronic City, Bangalore – 560105 Greenwood High International School Bengaluru No.8-14, Chickkawadayarapura, Near Heggondahalli, Gunjur Post, Varthur Sarjapur Road, Bangalore-560087 Sarla Birla Academy Bannerghatta, Bangalore, Canadian International School, Yelahanka, Bangalore Indus International School, Billapura Cross, Sarjapur Bangalore IGCSE International General Certificate of Secondary Education ) Schools of Bangalore Greenwood high international school, No.8-14, Chickkawadayarapura Gunjur Post, Varthur Sarjapur Road, Bangalore Oakridge International School, Oakridge International School, Sarjapur Road, Bangalore Edify School Electronic City 105 34th Main 23rd Cross Sector-A Surya Nagar Phase-2, Anekal-Chandapura Main Road, Electronic City Bangalore Orchids The International School Jalahalli Nagarbavi Mysore Road Sarjapur Road BTM, Bangalore Trio World School, #3/5, Kodigehalli Main Road Sahakar Nagar, Bangalore Ekya School, No.16, 6TH B Main J P Nagar 3RD Phase, Bangalore Vibgyor High school, 58/1, Thubarahallli Whitefield Road, Bangalore Vidyashilp Academy, 42/3, Shivanahalli Yelahanka, Bangalore, PRIMUS Public School, Post Box No. 21, Chikanayakanahalli Village, Off. Sarjapur Road Bangalore Jain International Residential School Jakkasandra Post, Kanakapura Taluk Bangalore Ryan International School, Kundanahalli, M. H. Colony, AECS Layout, Kundalahalli Gate,Bhd Hindustan Lever Ltd, Marathahalli Colony, Bangalore Ebenezer International School, Singena Agrahara Road, Via Hosur Road / A.P.M.C. Yard, Bangalore Mallya Aditi International School, Yelahanka Bangalore India International school 26/1,Chikkabellandur, Carmel Ram Post, Bangalore Ryan International School, Yelahanka, Vederapura Village, Gentiganahalli Road, Training Centre, Yelahanka Bangalore Indus International School, Billapura Cross Sarjapur, Bangalore The International School Bangalore (TISB), NAFL Valley Whitefield – Sarjapur Road, Bangalore Treamis World School, Hulimangala Post Bangalore Ryan International School, Bannerghatta road, Opp. Confident Cascade Bannergatta Main Road Bangalore International School, Geddalahalli Hennur Bagalur Road, Kothanur Post Bangalore Sarla Birla Academy Bannerghatta Jigni Road Bangalore Inventure Academy Whitefield – Sarjapur Road Bangalore Prakriya, # 70, Chikkanayakanahalli Road off Doddakannelli Sarjapur Road, Bangalore Buddhi School, 57, 3rd Main, 4th Cross RMV 2nd Stage, H.I.G Colony, Bangalore B.G.S. International Residential School Nithyananda Nagar, Kumbalagudu, Gollahalli Kengeri, Bangalore Solutions, India, IPhO, APhO, IMO, RMO, INMO, through, lectures, problems numericals Zookeeper, Subhashish, Chattopadhyay, Projectile, Latent, Heat Thermodynamics std 11 12 ISc Calculus BE BTech Differentiation Integration Mechanics Surface Tension Viscosity Accelerating Frame velocity wedge mass pulley Moment Inertia Roorkey Joint Entrance Exam CET AIEEE Irodov HCV Verma South Bangalore Intermediate Algebra Trigonometry Sexy Free Coaching study material preparation Olympiad Friction sin Modelling cos Potential tan cot Gravitation Electrostatics sec Field cosec Ellipse Parabola Hyperbola inverse string Tuition Kinetic Theory Gases Isothermal Adiabatic Isochoric Isobaric Processes Root Mean Square Differential Equation Soomrit Specific Cp Cv PV Diagram Bending Stress Strain Geostationary Satellite Entropy Coefficient Linear Expansion Alpha Beta Gamma Pendulum Conductivity Latent ice water Hydrometer Glass tube series Parallel travelling standing wave Sound Radiation stefan Boltzmann law Newton cooling cylinder Harmonic Overtone Resonance Sonometer Kunds Beat Frequency vibration tuning Fork Swimmer Young Bulk Modulus welded chamber not similar dissimilar MIT Caltech Yale pipe Magnetic Tesla Lenz LvB Vijaya Bank Enclave Apartments Bannerghatta Road Behind IIM Jayanagar J-P-Nagar Buoyant Buoyancy Rho efflux Bernoullis rare Poiseuilles Torricellis critical Terminal Reynolds Poise coalescing Laplace Ventury Hoop orifice Siphon Foucault stretched compression ball scale constant length shear poisson Ratio clock loosing time tvanausdal1 vkiledj Density Partial Pressure Humidity Leak SmartlearnwebTV Space Puncture Photon RC RLC LR Circuit Electrical Capacitor Inductance Linked Flux Wheatstone Bridge Freelanceteach Troutons Rule Van Arkel Method Overview Metallurgy Roasting Calcination Froth Floatation Purification Projected Area PET Kerala MPPET Delta Star conversion Internal Resistance Battery Trick Questions Infinite Ladder Quadratic Cubic Quartic Quintic Orissa NSEP ckt eqn mesh Folding Lenzs J&K Karnataka RMS instantaneous BCECE Maharastra MHCET RPET stepup stepdown transformer Bilekahalli UPSEAT shunt galvanometer susceptibility oscillating magnetometer pole strength Bihar Rajasthan Uttarpradesh Punjab Hariana TN Tamilnadu Andhra WB west Bengal Vacuum Diode Triode Rectifier Truth Table Thermionic emission, Radioactivity Half Life Langmiur, Child Law FCC BCC Cube Optics Lens Mirror Focus Focal Concave Convex Lux Phot Lumen Double slit Complex Integral coordinate Geometry compounds, Biochemistry, Plastic, Organic Chemistry Physical Analytical Inorganic Metallurgy, Biotechnology, Polymer Science, Rubber Technology Geology, Pharma, Veterinary Science,Food Technology, Cryogenics, Ceramics acid species IITJEE proton donor activation energy minimum energy IITJEE reaction breaking bonds addition polymer very long molecular chain formed repeated addition reactions many unsaturated alkene molecules monomers addition polymerisation process unsaturated alkene molecules monomers add growing polymer chain one timeIITJEE long saturated molecular chain addition polymer addition reaction reaction IITJEE reactant added IITJEE unsaturated molecule saturated molecule adsorption process IITJEE occurs gas, liquid solute surface solid rarely liquid alicyclic hydrocarbon hydrocarbon IITJEE carbon atoms joined together ring structure aliphatic hydrocarbon hydrocarbon IITJEE carbon atoms joined together straight branched chains alkali type base IITJEE dissolves water forming hydroxide ions OH (aq) ions alkanes homologous series IITJEE general formula C alkyl group alkane IITJEE hydrogen atom removed CH alkyl groups IITJEE IITJEE ‘R’ amount substance quantity whose unit mole Chemists amount substance IITJEE IITJEE counting atoms anhydrous substance IITJEE contains water molecules anion negatively charged ion atom economy atomic orbital region within atom hold two electrons IITJEE opposite spins atomic proton number number protons nucleus atom 100 products masses molecular sum product desired mass molecular economy atom Chemistry average bond enthalpy average enthalpy change IITJEE place IITJEE breaking homolytic fission 1 molIITJEE type bond molecules gaseous species Avogadro constant,isotope number atoms mole carbon base species IITJEE proton acceptor biodegradable material substance IITJEE broken IITJEE naturally environment living organisms Boltzmann distribution distribution energies molecules particular temperature IITJEE graph bond enthalpy enthalpy change IITJEE IITJEE breaking homolytic fission 1 mol bond molecules gaseous species carbanion organic ion IITJEE carbon atom hIITJEE negative charge carbocation organic ion IITJEE carbon atom hIITJEE positive charge catalyst substance IITJEE increases rate chemical reaction process cation positively charged ion cis trans isomerism special type isomerism IITJEE non hydrogen group hydrogen atom C C=C double bond cis isomer ( Z isomer) IITJEE H atoms on IITJEE carbon same side trans isomer E isomer H atoms carbon different bond compound substance formed IITJEE two IITJEE chemically bonded elements fixed ratio, usually chemical formula concentration amount solute mol IITJEE 1 dm 3 1000 cm solution coordinate bond shared pair electrons provided one bonding atoms called dative covalent bond covalent bond bond formed shared pair electrons cracking breaking long chained saturated hydrocarbonsIITJEE mixture shorter chained alkanesalkenes curly arrow symbol IITJEE reaction mechanisms IITJEE show movement electron Coaching ICWA Coaching CFA Coaching CFP Coaching CMAT Coaching School Tuitions CBSE School Tuitions Home Tuitions 9th STD Tuitions PUC Coaching 10th Std Tuitions College Tuitions Maths Tuitions Engineering Tuitions Accounts & Finance Tuitions MBA & BBA Coaching Microbiology & Biotech Tuitions Study Abroad GRE & SAT Coaching GMAT Coaching IELTS/TOEFL Coaching PTE Coaching proteins protonation pyridines pyrroles quinones quinolines radical reaction radicals rearrangement receptors reduction regioselectivity retro reaction rhodium ring closure ring contraction ring expansion ring opening ruthenium samarium scandium Schiff bases selenium self-assembly silicon sodium solid-phase synthesis solvent effects spectroscopy sphingolipids spiro compounds stereoselective synthesis stereoselectivity steric hindrance steroids Stille reaction substituent effects sulfates sulfonamides sulfones sulfoxides sulfur supported catalysis supramolecular tandem reaction tautomerism terpenoids thioacetals thiols tin titanium total synthesis transesterification transition metals transition states tungsten Umpolung vinylidene complexes vitamins Wacker reaction Wittig reaction ylides zeolites zinc BRST Quantization Effective field theories Field Theories Higher Dimensions Field Theories Lower Dimensions Large Extra Dimensions Lattice Quantum Field Theory Nonperturbative Effects Renormalization Group Renormalization Regularization Renormalons Sigma Models Solitons Monopoles Instantons Supersymmetric gauge theory Topological Field Theories 1/N Expansion Anyons Chern-Simons Theories Confinement Duality Gauge Field Theories Lattice Gauge Field Theories Scattering Amplitudes Spontaneous Symmetry Breaking Strong Coupling Expansion Topological States Matter Wilson ‘t Hooft skmclasses.weebly.comPolyakov loops Anomalies Field skmclasses.weebly.comString Theories BRST Symmetry Conformal W Symmetry Discrete skmclasses.weebly.comFinite Symmetries Gauge Symmetry Global Symmetries Higher Spin Symmetry Space-Time Symmetries AdS-CFT Correspondence Black Holes String Theory Bosonic Strings Brane Dynamics Gauge Theories Conformal Field Models String Theory D-branes dS vacua string theory F-Theory Flux compactifications Gauge-gravity correspondence Holography skmclasses.weebly.comcondensed matter physics (AdS CMT) Holography skmclasses.weebly.comquark-gluon plasmas Intersecting branes models Long strings M(atrix) Theories M-Theory p-branes Penrose limit skmclasses.weebly.compp-wave background String Duality String Field Theory String theory skmclasses.weebly.comcosmic string Superstring Vacua Superstrings skmclasses.weebly.comHeterotic Strings Tachyon Condensation Topological Strings 2D Gravity Black Holes Classical Theories Gravity Higher Spin Gravity Lattice Models Gravity Models Quantum Gravity Spacetime Singularities Extended Supersymmetry Supergravity Models Superspaces Supersymmetric Effective Theories Supersymmetry Duality Supersymmetry Breaking Differential skmclasses.weebly.comAlgebraic Geometry Integrable Hierarchies Non-Commutative Geometry Quantum Groups Statistical Methods Stochastic Processes Cosmology Theories beyond SM Solar skmclasses.weebly.comAtmospheric Neutrinos Thermal Field Theory Be Ansatz Boundary Quantum Field Theory Exact S-Matrix Quantum Dissipative Systems Random Systems B-Physics Beyond Standard Model Compactification String Models CP violation Electromagnetic Processes Properties GUT Heavy Quark Higgs Kaon LEP HERA SLC Neutrino Physics Quark Masses skmclasses.weebly.comSM Parameters Rare Decays Standard Model Supersymmetric Standard Model Technicolor Composite Models Chiral Lagrangians Deep Inelastic Scattering Higher Twist Effects Lattice QCD Parton Model Phase Diagram QCD Phenomenological Models QCD Quark-Gluon Plasma Resummation Sum Rules Aim Global Education Koramangala Computer Networking Training Cloud Computing Training JBOSS Training Juniper Certification Training L2 & L3 Protocol Training MCTS Training Engineering design Training CAD & CAM Training MATLAB Training PLC Training SCADA Training VLSI Design Multimedia & Design Training 2D Animation Training 3D Animation Training 4D Animation Training CorelDRAW Training VFX Training Web Technologies Training ASP.Net Training JQuery pair breaking formation covalent bond dative covalent shared pair electrons IITJEE hIITJEE been provided one bonding atoms only IITJEE called coordinate bond dehydration elimination reaction IITJEE water removed saturated molecule IITJEE IITJEE unsaturated molecule delocalised Electrons IITJEE shared IITJEE two atoms displacement reaction reaction IITJEE reactive element displaces less reactive element IITJEE aqueous solution latter’s ions displayed formula showing relative positioning atoms molecule bonds IITJEE disproportionation oxidation reduction element redox reaction dynamic equilibrium equilibrium IITJEE exists closed system IITJEE rate forward reaction equal IITJEE rate reverse reaction E/Z isomerism type stereoisomerism IITJEE different groups attached IITJEE carbon C=C double bond arranged differently space restricted rotation C=C bond electron configuration arrangement electrons IITJEE atom electronegativity measure attraction bonded atom pair electrons covalent bond electron shielding repulsion IITJEE electrons different inner shells Shielding reduces net attractive force IITJEE positive nucleus outer shell electrons electrophile atom group atoms IITJEE attracted IITJEE electron rich centre atom IITJEE accepts pair electrons covalent bond electrophilic addition type addition reaction IITJEE IITJEE electrophile attracted electron rich centre atom accepts pair electrons IITJEE IITJEE new covalent bond elimination reaction removal molecule IITJEE saturated molecule IITJEE unsaturated molecule empirical formula simplest whole number ratio atoms IITJEE element present compound endothermic reaction reaction IITJEE enthalpy products greater enthalpy reactants resulting heat being taken surroundings enthalpy heat content IITJEE stored chemical system standard enthalpy change combustion enthalpy change IITJEE IITJEE one mole substance reacts completely IITJEE oxygen under standard conditions reactants products being IITJEE standard states (standard) enthalpy change formation enthalpy change IITJEE one mole compound formed IITJEE constituent elements IITJEE standard states under standard conditions (standard) enthalpy change reaction enthalpy change IITJEE accompanies reaction molar quantities expressed chemical equation under standard conditions reactants products being IITJEE standard states enthalpy cycle diagram showing alternative routes IITJEE reactants products IITJEE allows indirect determination IITJEE enthalpy change IITJEE other known enthalpy changes using Hess’ law enthalpy profile diagram reaction IITJEE compare enthalpy reactants IITJEE enthalpy products esterification reaction IITJEE alcohol IITJEE carboxylic acid IITJEE produce ester water exothermic reaction IITJEE enthalpy products smaller enthalpy reactants, resulting heat loss IITJEE surroundings fractional distillation separation components liquid mixture skmclassesfractions IITJEE differ boiling point hence chemical composition IITJEE distillation typically using fractionating column fragmentation process mass spectrometry IITJEE causes positive ion split skmclasses pieces one positive fragment ion functional group part organic molecule responsible chemical reactions general formula simplest algebraic formula member homologous series. example general formula alkanes giant covalent lattice dimensional structure atoms, bonded together strong covalent bonds giant ionic lattice three dimensional structure oppositely charged ions, bonded together strong ionic bonds giant metallic lattice three dimensional structure positive ions delocalised electrons, bonded together strong metallic bonds greenhouse effect process IITJEE absorption subsequent emission infrared radiation atmospheric gases warms lower atmosphere planet’s surface group vertical column Periodic Table Elements group IITJEE similar chemical properties atoms skmclasses.weebly.comnumber outer shell electrons Hess law reaction IITJEE one route initial final conditions IITJEE total enthalpy change route heterogeneous catalysis reaction IITJEE catalyst IITJEE different physical state reactants; frequently, reactants IITJEE gases whilst catalyst solid heterolytic fission breaking covalent bond IITJEE both bonded electrons going IITJEE one atoms, forming cation (+ ion) IITJEE anion ion homogeneous catalysis reaction catalyst reactants physical state, IITJEE frequently aqueous gaseous state homologous series series organic compounds IITJEE functional group, IITJEE successive member differing homolytic fission breaking covalent bond IITJEE one bonded electrons going IITJEE atom, forming two radicals hydrated Crystalline containing water molecules hydrocarbon compound hydrogen carbon hydrogen bond strong dipole attraction IITJEE electron deficient hydrogen atom (O H on different molecule hydrolysis reaction IITJEE water aqueous hydroxide ions IITJEE breaks chemical compound skmclasses two compounds initiation first step radical substitution IITJEE free radicals generated ultraviolet radiation intermolecular force attractive force IITJEE neighbouring molecules Intermolecular forces van der Waals’ forces induced dipole ces permanent dipole forces hydrogen bonds ion positively negatively charge atom covalently bonded group atoms molecular ion ionic bonding electrostatic attraction IITJEE oppositely charged ions first) ionisation energy IITJEE remove one electron IITJEE IITJEE ion one mole gaseous 1+ ions IITJEE IITJEE one mole gaseous 2+ ions second) ionisation energy IITJEE remove one electron IITJEE IITJEE ion one mole gaseous 1+ ions IITJEE IITJEE one mole gaseous 2+ ions successive ionisation measure energy IITJEE remove IITJEE electron Chemistry energy second ionisation energy energy IITJEE one electron IITJEE IITJEE ion one mole gaseous 1+ ions IITJEE one mole gaseous 2+ ions isotopes Atoms element IITJEE different numbers neutrons different masses le Chatelier’s principle system dynamic equilibrium subjected change position equilibrium will shift minimise change limiting reagent substance chemical reaction IITJEE runs out first lone pair outer shell pair electrons IITJEE involved chemical bonding mass nucleon number particles protons aneutrons) nucleus mechanism sequence steps showing path taken electrons reaction metallic bond electrostatic attraction IITJEE positive metal ions adelocalised electrons molar mass substance units molar mass IITJEE molar volume IITJEE mole gas. units molar volume IITJEE dm room temperature pressure molar volume approximately 24.0 substance containing IITJEE many particles thereIITJEE carbon atoms exactly 12 g carbon isotope molecular formula number atoms IITJEE element molecule molecular ion M positive ion formed mass spectrometry IITJEE molecule loses electron molecule small group atoms held together covalent bonds monomer small molecule IITJEE combines IITJEE monomers polymer nomenclature system naming compounds nucleophile atom group atoms attracted electron deficient centre atom donates pair electrons covalent bond nucleophilic substitution type substitution reaction IITJEE nucleophile attracted electron deficient centre atom, IITJEE donates pair electrons IITJEE new covalent bond oxidation Loss electrons IITJEE increase oxidation number oxidation number measure number electrons IITJEE IITJEE atom uses bond IITJEE atoms another element. Oxidation numbers IITJEE derive d rules oxidising agent reagent IITJEE oxidises (takes electrons from) another species percentage yield period horizontal row elements Periodic Table Elements show trends properties across period periodicity regular periodic variation properties elements IITJEE atomic number position Periodic Table permanent dipole small charge difference across bond resulting IITJEE difference electronegativities bonded atoms permanent dipole dipole force attractive force IITJEE permanent dipoles neighbouring polar molecules pi bond (p bond reactive part double bond formed above below plane bonded atoms sideways overlap p orbitalspolar covalent bond bond IITJEE permanent dipole polar molecule molecule IITJEE IITJEE overall dipole skmclasses account dipoles across bonds polymer long molecular chain built monomer units precipitation reaction formation solid solution during chemical reaction Precipitates IITJEE formed IITJEE two aqueous solutions IITJEE mixed together principal quantum number n number representing relative overall energy orbital IITJEE increases distance nucleus sets orbitals IITJEE value IITJEE electron shells energy levels propagation two repeated radical substitution IITJEE build up products chain reaction radical species unpaired electron rate reaction change concentration reactant product redox reaction reaction IITJEE reduction oxidation take IITJEE reducing agent reagent IITJEE reduces (adds electron to) species reduction Gain electrons decrease oxidation number yield actual amount mol product theoretical amount mol product Chemistry reflux continual boiling condensing reaction mixture ensure IITJEE reaction IITJEE without contents flask boiling dry relative atomic mass weighted mean mass atom element compared one twelfth mass IITJEE atom carbon relative formula mass weighted mean mass formula unit compared IITJEE one twelfth mass atom carbon relative isotopic mass mass atom isotope compared IITJEE one twelfth mass atom carbon relative molecular mass weighted mean mass molecule compared twelfth mass atom carbon 12 repeat unit specific arrangement atom s IITJEE occurs structure over over again. Repeat units IITJEE included brackets outside IITJEE symbol n Salt chemical compound formed IITJEE IITJEE acid IITJEE H+ ion acid IITJEE been replaced metal ion another positive ion such IITJEE ammonium ion, NH saturated hydrocarbon IITJEE single bonds only shell group atomic orbitals IITJEE principal quantum number known main energy level simple molecular lattice three dimensional structure molecules, bonded together weak intermolecular forces skeletal formula simplified organic formula, IITJEE hydrogen atoms removed alkyl chains, leaving carbon skeleton associated functional groups species particle IITJEE part chemical reaction specific heat capacity, c energy IITJEE raise temperature 1 g substance 1 C spectator ions Ions present part chemical reaction standard conditions pressure 100 kPa 1 atmosphere stated temperature usually 298 K (25 °C), concentration 1 mol dm reactions aqueous solutions standard enthalpies enthalpystandard solution solution known concentration Standard solutions normally IITJEE titrations IITJEE determine unknown information another substance Chemistry standard state physical state substance under standard conditions 100 kPa 1 atmosphere) 298 K 25 C stereoisomers Compounds structural formula IITJEE different arrangement atoms space stoichiometry molar relationship IITJEE relative quantities substances part reaction stratosphere second layer Earth’s atmosphere, containing ‘ozone layer’, about 10 km IITJEE 50 km above Earth’s surface structural formula formula showing minimal detail arrangement atoms molecule structural isomers Molecules IITJEE molecular formula different structural arrangements atoms subshell group type atomic orbitals s, p, d f within shell substitution reaction reaction IITJEE atom group atoms replaced different atom group atoms termination step end radical substitution IITJEE two radicals combine IITJEE molecule thermal decomposition breaking chemical substance IITJEE heat skmclasses least two chemical substances troposphere lowest layer Earth’s atmosphere extending Earth’s surface about 7 km (above poles) about 20 km above tropics unsaturated hydrocarbon hydrocarbon containing carbon carbon multiple bonds van der Waals’ forces Very weak attractive forces IITJEE induced dipoles neighbouring molecules volatility ease IITJEE liquid turns skmclasses gas Volatility increases boiling point decreases water crystallisation Water molecules IITJEE IITJEE IITJEE essential part crystalline structure absolute zero – theoretical condition concerning system at zero Kelvin IITJEE system does IITJEE emit absorb energy (all atoms rest accuracy – how close value IITJEE actual true value IITJEE see precision acid compound that, IITJEE dissolved water pH less 7.0 compound IITJEE donates hydrogen ion acid anhydride compound IITJEE two acyl groups boundIITJEE single oxygen atom acid dissociation constant – IITJEE equilibrium constant dissociation weak acid actinides – fifteen chemical elements IITJEE actinium (89) lawrencium (103 activated complex – structure IITJEE forms because collisionIITJEE molecules new bondsvIITJEE formed activation energy – minimum energy IITJEE must be inputIITJEE chemical system activity series actual yield addition reaction – within organic chemistry, IITJEE two IITJEE molecules combineIITJEE IITJEE larger aeration mixing air skmclasses liquid solid alkali metals metals Group 1 on periodic table alkaline earth metals – metals Group 2 on periodic table allomer substance IITJEE hIITJEE skmclasses.weebly.comdifferent composition another skmclasses.weebly.comcrystalline structure allotropy elements IITJEE different structures therefore different forms IITJEE Carbon diamonds, graphite, fullerene anion negatively charge ions anode – positive side dry cell battery cell aromaticity – chemical property conjugated rings IITJEE results unusual stability. See IITJEE benzene atom – chemical element IITJEE smallest form, made up neutrons skmclasses.weebly.comprotons within nucleus skmclasses.weebly.comelectrons circling nucleus atomic mass unit atomic number number representing IITJEE element IITJEE corresponds IITJEE number protons within nucleus atomic orbital region IITJEE electron atom may be found atomic radius average atomic mass Avogadro’s law Avogadro’s number number particles mole substance ( 6.02×10^23 ) barometer deviceIITJEE SKMClasses.weebly.comIITJEE measure pressure atmosphere base substance IITJEE accepts proton high pH; common example sodium hydroxide (NaOH biochemistry chemistry organisms boiling phase transition liquid vaporizing boiling point temperature IITJEE substance startsIITJEE boil boiling-point elevation process IITJEE boiling point elevated adding substance bond – attraction repulsion IITJEE atoms molecules IITJEE cornerstone Boyle’s law Brønsted-Lowrey acid chemical species IITJEE donates proton Brønsted–Lowry acid–base reaction Brønsted-Lowrey base – chemical species IITJEE accepts proton buffered solution – IITJEE aqueous solution consisting weak acid skmclasses.weebly.comits conjugate base weak base skmclasses.weebly.comits conjugate acid IITJEE resists changes pH IITJEE strong acids basesIITJEE added burette (IITJEE buret glasswareIITJEE dispense specific amounts liquid IITJEE precision necessary titration resource dependent reactions example combustion catalyst chemical compoundIITJEE SKMClasses.weebly.comIITJEE change rate IITJEE speed up slow down reaction,IITJEE regenerated at end reaction cation – positively charged ion centrifuge equipmentIITJEE SKMClasses.weebly.comIITJEE separate substances based on density rotating tubes around centred axis cell potential force galvanic cell IITJEE pulls electron through reducing agentIITJEE oxidizing agent chemical Law certain rules IITJEE pertain IITJEE laws nature skmclasses.weebly.comchemistry – examples chemical reaction – change one IITJEE substances skmclassesanother multiple substances colloid mixture evenly dispersed substances such IITJEE skmclasses.weebly.comm milks combustion IITJEE exothermic reaction IITJEE oxidant skmclasses.weebly.comfuel IITJEE heat skmclasses.weebly.comoften light compound – substance IITJEE made up two IITJEE chemically bonded elements condensation phase changeIITJEE gasIITJEE liquid conductor material IITJEE allows electric flow IITJEE freely covalent bond – chemical bond IITJEE involves sharing electrons crystal solid IITJEE packed IITJEE ions, molecules atoms IITJEE orderly fashion cuvette glasswareIITJEE spectroscopic experiments. usually made plastic glass quartz skmclasses.weebly.comshould be IITJEE possible deionization removal ions, water’s case mineral ions such IITJEE skmclasses.weebly.comsodium, iron skmclasses.weebly.comcalcium deliquescence substances IITJEE absorb water IITJEE atmosphereIITJEE liquid solutions deposition – settling particles within solution mixture dipole electric magnetic separation charge dipole moment – polarity polar covalent bond dissolution solvation – spread ions monosacharide double bond sharing two pairs electradodes Microcentrifuge Eppendorf tube IITJEE Coomassie Blue solution earth metal – see alkaline earth metal electrolyte solution IITJEE conducts certain amount current split categorically IITJEE weak skmclasses.weebly.comstrong electrolytes electrochemical cell using chemical reaction’s current electromotive force made electromagnetic radiation type wave IITJEE through vacuums IITJEE skmclasses.weebly.comwell IITJEE skmclasses.weebly.commaterial skmclasses.weebly.comclassified IITJEE self-propagating wave electromagnetism fields IITJEE electric charge skmclasses.weebly.comelectric properties IITJEE change way IITJEE particles move interact electromotive force device IITJEE gains energy IITJEE skmclasses.weebly.comelectric charges pass through electron – subatomic particle IITJEE net charge IITJEE negative electron shells – IITJEE orbital around atom’s nucleus fixed number electrons usually two eight electric charge measured property (coulombs) IITJEE determine electromagnetic interaction element IITJEE atom IITJEE defined IITJEE atomic number energy – system’s abilityIITJEE do work enthalpy – measure total energy thermodynamic system (usually symbolized IITJEE skmclasses.weebly.comH entropy – amount energy IITJEE available work closed thermodynamic system usually symbolized IITJEE S enzyme – protein IITJEE speeds up catalyses reaction Empirical Formula – IITJEE called simplest formula gives simplest whole -number ratio atoms IITJEE element present compound eppendorf tube – generalized skmclasses.weebly.comtrademarked term type tube; see microcentrifuge freezing – phase transitionIITJEE liquidIITJEE solid Faraday constant unit electrical charge widelyIITJEE electrochemistry skmclasses.weebly.comequalIITJEE ~ 96,500 coulombs represents 1 mol electrons, Avogadro number electrons: 6.022 × 1023 electrons. F = 96 485.339 9(24) C/mol Faraday’s law electrolysis two part law IITJEE Michael Faraday published about electrolysis mass substance altered at IITJEE electrode during electrolysis directly proportionalIITJEE quantity electricity transferred at IITJEE electrode mass IITJEE elemental material altered at IITJEE electrode directly proportionalIITJEE element’s equivalent weight frequency number cyclesIITJEE unit time. Unit: 1 hertz = 1 cycleIITJEE 1 second galvanic cell battery made up electrochemical IITJEE two different metals connected salt bridge gas particles container IITJEE no definite shape volume geochemistry – chemistry skmclasses.weebly.comchemical composition Earth Gibbs energy – value IITJEE indicates spontaneity reaction usually symbolized G Cavalier India, Kalyan Nagar halogens Group 7 Periodic Table skmclasses.weebly.comare non-metals heat energy transferredIITJEE one systemIITJEE another thermal interaction jodium – Latin name halogen element iodine Joule SI I.M.S. Learning Resources Pvt. Ltd., Jaya Nagar 4th Block unit energy, defined IITJEE newton-meter indicator special compound addedIITJEE solution IITJEE changes color depending on acidity solution; different indicators Giraffe Coaching, Cunningham Road different colors effective pH ranges inorganic compound – compounds IITJEE contain carbon IITJEE exceptions main article inorganic chemistry part chemistry concerned IITJEE inorganic compounds International Union Pure skmclasses.weebly.comApplied Chemistry IUPAC insulator material IITJEE resists flow electric current ion molecule gained lost one IITJEE electron ionic bond electrostatic attractionIITJEE oppositely charged ions ionization breaking up compound skmclassesseparate ions Kinetics sub-field chemistry specializing reaction rates Kinetic energy energy IITJEE object IITJEE motion lanthanides Elements 57 through 71 lattice Unique arrangement atoms molecules crystalline liquid solid Laws thermodynamics liquid state matter IITJEE shape container light Portion electromagnetic spectrum IITJEE visibleIITJEE naked eye. IITJEE called “visible light London dispersion forces weak intermolecular force Law Motion object motion stay motion IITJEE object rest stays rest unless IITJEE unbalanced force acts molecule IITJEE one key components within chemistry Metal Chemical element IITJEE good conductor both electricity skmclasses.weebly.comheat skmclasses.weebly.comforms cations skmclasses.weebly.comionic bonds IITJEE non-metals melting phase changeIITJEE solidIITJEE liquid metalloid substance possessing both properties metals skmclasses.weebly.comnon-metals methylene blue heterocyclic aromatic chemical compound IITJEE molecular formula C16H18N3SCl microcentrifuge plastic container IITJEE IITJEE SKMClasses.weebly.comIITJEE store small amounts liquid mole – abbreviated mol measurement IITJEE amount substance single mole contains approximately 6.022×1023 units entities mole water contains 6.022×1023 H2O molecules molecule chemically I Beacons Academy, Jaya Nagar 4th Block bonded number atoms IITJEE SKMClasses.weebly.comIITJEE electrically neutral molecular orbital region mIITJEE electron found molecule opposed atom neat Alchemy India Services Pvt. Ltd. Residency Road conditions IITJEE liquid reagent gas performed IITJEE no added solvent cosolvent neutron neutral unit subatomic particle Institute Engineering Studies, Malleswaram net charge neutrino particle IITJEE travel speeds close speed light skmclasses.weebly.comare created IITJEE result radioactive decay Brainstorm Consulting Pvt. Ltd., Jaya Nagar 4th Block nucleus centre Ace Creative Learning, Basavanagudi Anegundi Coaching Academy, Malleswaram atom made neutrons skmclasses.weebly.comprotons, IITJEE net positive charge noble gases group 18 elements, those whose outer electron shell filled non-metal Career Launcher, Jaya Nagar 3rd Block element IITJEE metallic nuclear pertainingIITJEE atomic Gate Indian Institute Tutorials J.P. Nagar 2nd Phase nucleus nuclear magnetic resonance spectroscopy technique IITJEE exploits magnetic properties certain nuclei, useful skmclasses.weebly.comidentifying unknown compounds number density measure concentration countable objects atoms molecules space; number volume orbital may referIITJEE either IITJEE atomic orbital molecular orbital organic compound compounds IITJEE contain carbon organic chemistry part chemistry concerned IITJEE organic compounds pH measure acidity basicity solution plasma state matter similar gas certain portion particlesIITJEE ionized other metal metallic elements p-block characterized having combination relatively low melting points less 950 K) skmclasses.weebly.comrelatively high electronegativity values IITJEE 1.6 revised Pauling potential energy stored body system due position force field due toIITJEE configuration precipitate formation solid solution inside another solid during chemical reaction diffusion solid precision close results multiple experimental trials IITJEE accuracy photon carrier electromagnetic radiation wavelength IITJEE skmclasses.weebly.comgamma rays skmclasses.weebly.comradio waves proton positive unit subatomic particle IITJEE positive charge protonation addition proton (H+) atom, molecule ion Quantum mechanics study how atoms, molecules, subatomic particles behave Career Edge India, Hosur Road structured quarks – elementary Eduplot Learning Solutions in Malleswaram particle fundamental constituent matter quanta minimum amount bundle energy radiation energy IITJEE waves subatomic particles IITJEE change IITJEE high energyIITJEE low energy states radioactive decay – process unstable atomic nucleus losing energy emitting radiation Raoult’s law reactivity series reagent s-block elements – Group 1 skmclasses.weebly.com2 elements (alkali skmclasses.weebly.comalkaline metals), IITJEE includes Hydrogen skmclasses.weebly.comHelium salts – ionic compounds composed anions skmclasses.weebly.comcations salt bridge – devicesIITJEE SKMClasses.weebly.comIITJEE connection reduction IITJEE oxidation half-cells IITJEE electrochemical cell saline solution – general term skmclasses.weebly.comNaCl water Schrödinger equation – quantum state equation IITJEE represents behaviour GoodIITJEE Excellence, BTM 1st Stage election around IITJEE atom semiconductor IITJEE electrically conductive solid IITJEE conductor insulator single bond – sharing one pair electrons sol suspension solid particles liquid Artificial examples include sol-gels solid – one states matter, IITJEE moleculesIITJEE packed close together,IITJEE resistance movement/deformation skmclasses.weebly.comvolume change Young’s solute part solution IITJEE mixed skmclassessolvent Gate Indian Institute Tutorials in J.P. Nagar 2nd Phase NaCl saline water solution homogeneous mixture made up multiple substances. solutes skmclasses.weebly.comsolvents solvent part solution dissolves solute H2O saline water spectroscopy study radiation skmclasses.weebly.commatter, such IITJEE X-ray absorption skmclasses.weebly.comemission spectroscopy speed light speed anything IITJEE zero rest mass (Energyrest = mc² IITJEE m mass skmclasses.weebly.comc speed G.C. Rao Academy in Bull Temple Road light Standard conditions temperature skmclasses.weebly.compressure SATP standardisationIITJEE order compare experimental results (25 °C 100.000 kPa state matter matter having homogeneous, macroscopic phase; gas, plasma Ria Institute Technology in Marathahalli liquid solidIITJEE SKM well known increasing concentration sublimation – phase transitionIITJEE solidIITJEE limewater fuel gas subatomic particles – particles IITJEE SKMClasses.weebly.comIITJEE smaller atom; examplesIITJEE protons neutrons skmclasses.weebly.comelectrons substance – material IITJEE definite chemical composition Phase diagram showing triple skmclasses.weebly.comcritical points substance talc mineral representing one on Mohs Scale skmclasses.weebly.comcomposed hydrated magnesium silicate IITJEE chemical formula H2Mg3(SiO3)4 Mg3Si4O10(OH)2 temperature – average energy microscopic motions particles theoretical yield yield theory model describing nature phenomenon thermal conductivity property material Communication Careers R.M.V. Extn. 2nd Stage conduct heat (often noted IITJEE k thermochemistry study absorption release heat within chemical reaction thermodynamics study effects changing temperature, volume pressure work, heat, energy on macroscopic scale I-Bas Consulting Pvt. Ltd., Ulsoor thermodynamic stability IITJEE system IITJEE lowest energy state IITJEE environment equilibrium thermometer device measures average energy system titration – process titrating one solution IITJEE another Cavalier India, Kalyan Nagar called volumetric analysis torr unit measure pressure (1 Torr equivalentIITJEE 133.322 Pa 1.3158×10-3 atm transition metal elements IITJEE incomplete d sub-shells IITJEE may referredIITJEE IITJEE d-block elements transuranic element – element IITJEE atomic number greater 92; none transuranic elementsIITJEE stable triple bond – sharing three pairs electrons within covalent bond example N2 triple point temperature skmclasses.weebly.compressure three phasesIITJEE Water special National IAS Academy, Raja Rajeshwari Nagar phase diagram Tyndall effect effect light scattering colloidal mixture IITJEE one substance dispersed evenly through another suspended particles UN number four digit codeIITJEE SKMClasses.weebly.comIITJEE note hazardous flammable substances uncertainty characteristic IITJEE measurement IITJEE involves estimation any amount cannot be exactly reproducible Uncertainty principle knowing Shaping Lives Education Pvt. Ltd., Rajaji Nagar location particle makes momentum uncertain knowing momentum particle makes location uncertain unit cell smallest repeating unit lattice unit factor statements Manhattan Review, Jaya Nagar convertingIITJEE units universal ideal gas constant proportionality constant ideal gas law (0.08206 L·atm/(K·mol)) valence electron outermost electrons IITJEE atom IITJEE SKMClasses.weebly.comIITJEE located electron shells Valence bond theory theory explaining chemical bonding within molecules discussing valencies number chemical bonds formed IITJEE atom van der Waals force – one forces (attraction/repulsion)IITJEE molecules van ‘t Hoff factor – ratio moles particles solutionIITJEE moles solute dissolved vapor IITJEE substance below critical temperature gas phase vapour pressure – pressure vapour over liquid at equilibrium vaporization phase changeIITJEE liquidIITJEE gas viscosity – resistance liquidIITJEE flow (oil) volt one joule workIITJEE coulomb unit electrical potential transferred voltmeter – instrument IITJEE measures cell potential volumetric analysis Endeavor, Jaya Nagar 5th Block titration water – H2O – chemical substance, major part cells Earth, covalently bonded wave function function describing electron’s position three-dimensional space worknamount force over distance terms joules energy X-ray ionizing, electromagnetic radiation gamma skmclasses.weebly.comUV rays X-ray diffraction – method establishing structures crystalline solids using singe wavelength X-rays looking diffraction pattern X-ray photoelectron spectroscopy spectroscopic technique IITJEE measure composition material yield amount product produced during chemical reaction zone melting way remove impuritiesIITJEE IITJEE element melting slowly travel IITJEE ingot (cast) Zwitterion chemical compound whose net charge zero skmclasses.weebly.comhence electrically neutral IITJEE positive negative charges due formal charge, owing partial charges IITJEE constituent atoms acetals acylation addition aggregation alcohols aldehydes aldol reaction alkaloids alkanes alkenation alkene complexes alkenes alkyl halides alkylation alkyne complexes alkynes allenes allylation allyl complexes aluminum amides amination amines amino acids amino alcohols amino aldehydes annulation annulenes antibiotics antifungal agents antisense agents antitumor agents antiviral agents arene complexes arenes arylation arynes asymmetric catalysis asymmetric synthesis atropisomerism autocatalysis azapeptides azasugars azides azo compounds barium benzylation betaines biaryls bicyclic compounds biomimetic synthesis bioorganic biosynthesis boron bromine calixarenes carbanions carbene complexes carbenes carbenoids carbocation carbocycles carbohydrates carbonyl complexes carbonylation carboxylic acids catalysis catenanes cations cavitands chelates chemoselectivity chiral auxiliaries chiral pool chiral resolution chirality chromium chromophores cleavage clusters combinatorial complexes condensation conjugation copper coupling cross-coupling crown compounds cryptands cuprates cyanines cyanohydrins cyclization cycloaddition cyclodextrines cyclopentadienes cyclophanes dehydrogenation dendrimers deoxygenation desulfurization diastereoselectivity diazo compounds diene complexes Diels-Alder reaction dihydroxylation dimerization diols dioxiranes DNA domino reaction drugs electrocyclic reactions electron transfer electrophilic addition electrophilic aromatic substitution elimination enantiomeric resolution enantioselectivity ene reaction enols enones enynes enzymes epoxidation epoxides esterification esters ethers fluorine free radicals fullerenes furans fused-ring systems gas-phase reaction genomics glycolipids glycopeptides glycosidases glycosides glycosylation green chemistry Grignard reaction halides halogenation halogens Heck reaction helical structures heterocycles heterogeneous catalysis Jain International Residential School Jakkasandra Post, Kanakapura Taluk Bangalore high-throughput JSS Public School, HSR Layout No 4/A, 14th Main, 6th Sector HSR Layout, Bangalore screening HIV homogeneous catalysis host-guest systems hydrazones hydrides hydroboration hydrocarbons hydroformylation hydrogen transfer hydrogenation Freedom International School C A # 33, Sector IV HSR Layout, Bangalore hydrolysis hydrosilylation hydrostannation hyperconjugation imides imines indium indoles induction inhibitors insertion iodine ionic liquids iridium iron isomerization The Brigade International School , Brigade Millenium JP Nagar Brigade Millenium, JP Nagar Bangalore ketones kinetic resolution lactams lactones lanthanides Lewis acids ligands lipids lithiation lithium macrocycles magnesium manganese Mannich bases medicinal chemistry metalation metallacycles metallocenes metathesis Michael addition Mitsunobu reaction molecular recognition molybdenum multicomponent reaction nanostructures natural products neighboring-group effects nickel nitriles nitrogen nucleobases nucleophiles nucleophilic addition nucleophilic National Centre For Excellence 154/1, “Victorian Enclave”, 5th Main, Malleshpalya, Bangalore aromatic substitution nucleosides nucleotides olefination oligomerization oligonucleotides oligosaccharides organometallic reagents osmium oxidation oxygen oxygenations ozonolysis palladacycles palladium peptides pericyclic reaction peroxides phase-transfer catalysis phenols pheromones phosphates phosphorus phosphorylation Adugodi Aga Abbas Ali Road Agaram Agrahara Dasara Halli Agrahara Dasarahalli Airport Exit Road Airport Main Road Airport Road Akkipet Ali Askar Road Alur Venkatarao Road Amarjyothi Layout Amruth Nagar Amrutha Halli Ananda Nagar Anandrao Circle Anche Palya Ane Palya Anekal Anjana Nagar Anubhava Nagar APMC Yard Arabic College Arakere Arcot Sreenivasachar Street Ashok Nagar Ashwath Nagar Attibele Attiguppe Austin Town Avala Halli Avenue Road B. Narayanapura Babusahib Palya Bagalagunte Bagalur Balaji Nagar Balepet Banashankari Banashankari 1st Stage Banashankari 2nd Stage Banashankari 3rd Stage Banaswadi Banaswadi Ring Road Bangalore G.P.O Bannerghatta Bannerghatta Road Bapuji Nagar Basappa Circle Basava Nagar Basavanagudi Basaveshwara Nagar Basaveshwara Nagar 2nd Stage Basaveshwara Nagar 3rd Block Basaveshwara Nagar 3rd Stage Basaveshwara Road Bazaar Street Begur BEL Road Bellandur Bellandur Outer Ring Road Bellary Road BEML Layout Benagana Halli Bendre Nagar Benson Town Bharati Nagar Bhattara Halli Bhoopasandra Bhuvaneshwari Nagar Bidadi Bileka Halli Bilekahalli Binny Mill Road Bismillah Nagar Bommana Halli Bommanahalli Kendriya Vidyalaya Malleswaram 18th Cross Malleswaram Bangalore Bommasandra Bommasandra Industrial Area Brigade Road Brindavan Nagar Brookefield Brunton Road BTM 1st Stage BTM 2nd Stage Bull Temple Road Palace Orchards/Sadashivnagar area located north city centre IITJEE property prices higher brackets possibly IITJEE up-market residential area in Bangalore M.G. Road/Brigade Road M.G. Road skmclasses.weebly.comBrigade Road main commercial areas Bangalore. Residential areas nearbyIITJEE Brunton Road Rest House Road, St. Mark’s Road skmclasses.weebly.comLavelle Road Airport Road/Indiranagar eastern suburb, Indiranagar is easily accessible IITJEE city centre Airport Koramangala Located south Indiranagar, Koramangala quite favourite IITJEE IT professionals Despite 7 kmsIITJEE city centre, property values Ulsoor scenic man-made lake Ulsoor seen a spurt building activity last few years.IITJEE proximityIITJEE M.G Road jacked up property prices here Jayanagar/J.P. Nagar/Banashankari proximity areas Electronic City main reason skmclasses.weebly.comtheir growth recent past Jayanagar largest colonies Asia skmclasses.weebly.comthese areas popular areas Bangalore. Jayanagara originally namedIITJEE Sri Jayachamarajendra wodeyar last king Mysore. Later Sri Kumaran Children’s Home Survey No 44 – 50, Mallasandra Village Uttarahalli Hobli, Off Kanakapura Main Road, Bangalore skmclasseslocality namedIITJEE current DD kendra is situated known IITJEE JC Nagar or Jayachamarajendra Nagar Delhi Public School, North Campus Survey No. 35/A, Sathanur Village Jala Hobli, Bangalore Jayanagar IITJEE literally Victory City Jayanagar IITJEE traditionally regarded IITJEE southern end Bangalore South End Circle “, wherein six roadsIITJEE different areas meet historic Ashoka Pillar mark southern end city bear this fact. newer extensions IITJEE taken away this distinctionIITJEE Jayanagar still remains one IITJEE southern parts city Malleshwaram Basavanagudi Malleshwaram north Bangalore, Basavanagudi south IITJEE areas oldest Bangalore residents IITJEE original inhabitants City. Malleswaram PSBB Learning Leadership Academy
# 52, Sahasra Deepika Road, Laxmipura Village, Off Bannerghatta Main Road Bangalore located actually north-west Bangalore derives IITJEE name IITJEE famous Kaadu Malleshwara temple 8th Cross in Malleshwaram, skmclasses.weebly.comGandhibazar/ DVG Road in Basavanagudi IITJEE popular areas in Bangalore skmclasses.weebly.comshopping during festival times. Malleswaram been homeIITJEE several important personalities skmclasses.weebly.cominstitutions. Bangalore’s own Nobel laureate, C.V. Raman, late Veena Doreswamy Iyengar M.Chinnaswamy cricket stadium is named, academician M.P.L. Sastry, poet G.P. Rajaratnam Dewan Seshadri Iyer institutions IITJEE Canara Union club Konkani-speaking people in 1930 IITJEE SKMClasses.weebly.comIITJEE this day hosts a variety cultural activities Malleswaram Association, hub area’s sporting activity since 1929 Chowdaiah Memorial hosting great names music skmclasses.weebly.comtheatre. AccordingIITJEE recent figures available IITJEE Bangalore Development Authority BDA Malleswaram’s net population density is 521 personsIITJEE hectare, Bangalore City Corporation standard is 352IITJEE hectare Sadhashivnagar Sadashivanagar arguably IITJEE elite skmclasses.weebly.comexpensive neighborhood in Bangalore India fashionable among politicians, movie starsIITJEE millionaires afford homes “Beverly Hills Bangalore,” having IITJEE address in Sadashivanagar connotes high level prestige success fame Vijayanagar derivesIITJEE nameIITJEE Vijayanagara empire IITJEE flourished in south India during 15th skmclasses.weebly.com16th centuries.Vijayanag ar East is popularly known IITJEE base RPC Layout (Railway Parallel Colony Layout), since this layout is along railway track. IITJEE recently renamed Hampi Nagar Hampi capital Vijayanagar Empire Vijayanagar houses a large Public Library, IITJEE is one largest in Karnataka Halasuru Halasuru formerly known IITJEE Ulsoor oldest neighbourhoods Indian city Bangalore predominant Tamil speaking population renowned numerous temples skmclasses.weebly.comrather narrow streets skmclassesprominant areas CityIITJEE Sanjay Nagar RT Nagar, Hebbal, Vyalikaval, Yeshwanthpur, Sriramapura, Rajajinagar, Rajarajeshwarinagar, Chickpet, Chamarajpet, V V Puram, Mavalli, Hanumanthanagar, Padmanabhanagar Hosakerehalli Sarakki, BTM Layout, Domlur, Gandhinagar, Vasanthanagar, Vivek Nagar, Cox Town, Frazer Town Benson Town Bangalore Roads Many roads Bangalore had European names South Parade Road, Albert Victor Road, Hardinge Road, Grant Road several roads Bangalore derived Delhi Public School Sarjapur, Bangalore East Survey No.43/1B & 45, Sulikunte Village, Dommasandra Post, Bangalore IITJEE military nomenclature Mahatma Gandhi Road MG Raod called IITJEE South Parade nomenclature Independence Edify School Electronic City
105, 34th Main, 23rd Cross, Sector-A, Surya Nagar Phase-2, Anekal-Chandapura Main Road, Electronic City Chamarajpet First Main Road named Albert Victor Road 1889 future King Edward VII renamed Alur Venkatarao Road,IITJEE well-known Kannada writer skmclasses.weebly.comprotagonist unification National Public School, Koramangala National Games Village Koramangala, Bangalore Kannada-speaking areas andlater shortened IITJEE A.V. Road. Avenue road earlier known Doddapete Infantry Road became Bhagavan Mahaveer Road 2004 Chamarajendra Park Jyothi Kendriya Vidyalaya Yelachenahalli, Kanakapura Road Bangalore IITJEE Cubbon Park IITJEE Sir Mark Cubbon British Commissioner Mysore mid-19th century. Fraser Town, IITJEE named Sir Stuart Fraser scholar tutor Maharaja Krishnaraja Wadiyar IV Pulakeshinagar. Hardinge Road old name Pampa Mahakavi Road. sometime, Cunningham Road crowded bazaar being called Sampangi Ramaswamy Temple Road Race Course Road became Devraj Urs Road National Public School, Rajajinagar 1036-A, Purandarapura, V Block, Rajajinagar, Bangalore skmclasses.weebly.comGrant Road became Vittal Mallya Road IITJEE two Vittal Mallya Roads skmclasses bund Sampangi Tank Kanteerava Stadium Gear Innovative International School GEAR Road, Doddakannelli, Off Sarjapur Road & Outer Ring Road, Bangalore IITJEE built MacIver Town Shantala Nagar Assayee Road Meanee Road those names commemoration wars fought Madras New Horizon Gurukul Ring Road Marathalli, Behind New Horizon College of Engineering, Bangalore , Bangalore IITJEE Sappers, BGS National Public School Ramalingeshwara Cave Temple Hulimavu, Bangalore IITJEE Presidency School (Bangalore – East) CA Site 7P1A, 2nd A Main, 3rd A cross, East of NGEF Layout, Kasturinagar, Bangalore British Army against Marathas first decade 19th century Basavanagudi, meaning temple Basava big bull situated area reason behind naming area Basavanagudi extension skmclassesformed around 1900. Gandhi Bazar, earlier known merely Angadi Beedhi School Of India Anekal Road, Bannerghatta, Bangalore skmclasses formed Kumarapark came skmclasses existence 1947, year Indian Independence, whereas Jayanagar skmclasses.weebly.comRajajinagarIITJEE thought year later 1948 orchards Bangalore Palace skmclasses developed housing colony skmclasses.weebly.comnamed Sadashivanagar 1960,IITJEE Orchids The International School Jalahalli, Nagarbavi, Mysore Road, Sarjapur Road, BTM, Bangalore well-known freedom fighter Dakshina Kannada Karnad Sadashiva Rao BVK Iyengar Road Byappana Halli Byatarayanapura Byrasandra C.V Raman Nagar Cambridge Layout Cambridge Road Cantonment Carmelaram Castle Street Central Street Chamarajapet Shanthi Theatre South End Circle INOX Shree Garuda Swagath Mall, 4th Floor, Tilak Nagar Main Road INOX Bangalore Central-2, 5th Floor, 45th Cross Maheshwari Theater Bannerghatta Main Road Gopalan Cinemas Gopalan Innovation Mall, JP Nagar 3rd Phase Chandapura Chandra Layout Global Academy For Learning Sri Chowdeshwari Farm, Near Global Village IT Park, National Public School, HSR Layout P2/32, Sector 4, HSR Layout Bangalore Pattanagere Main Road, Rajarajeshwarinagar, Bangalore Chickpet Chikkabanavara Chikkadugodi Chikkallasandra Chikkamavalli Cholara Palya Chowdeshwari Temple Street Chunchagatta Church Street Town CMH Road Coles Park Commercial Street Commissariat Road Cooke Town Corporation Circle Cottonpet Cox Town Crescent Road Cubbon Park Cubbon Road Cubbonpet Cunningham Road Dairy Circle Dasara Halli Dasarahalli Devaiah Park Devana Halli Devanahalli Devara Chikkana Halli Devara Jeevana Halli Devasandra Dharmaram College Dickenson Road Dispensary Road Dodda Banaswadi Dodda Bommasandra Dodda Kallasandra Dodda Kanna Hally Dodda Mavalli Doddaballapur Road Doddaballapura Doddana Kundi Dollars Colony Domlur Domlur 2nd Stage Domlur Ring Road Dooravani Nagar Dr. Ambedkar Veedhi Dr. DVG Road Delhi Public School, South 11 K.M., kanakapura Road Konanakunte Post, Bangalore Dr. Raj Kumar Road Dr. TCM Royan Road Ejipura Electronic City Field Marshal Cariappa Road Frazer Town Ganapathi Nagar Gandhi Bazaar Gandhi Nagar Ganga Nagar Gangadhar Chetty Road Ganigarpet Garvebhavi Palya Gavipuram Extension Gayathri Nagar Geddala Halli Geddalahalli Giri Nagar Giri Nagar 1st Phase Giri Nagar 2nd Phase GM Palya Gokula Golf Course Road Gorgunte Palya Govindaraj Nagar Green Park Extension, Guddada Halli Gundopanth Street National Public School, Indiranagar 12 A Main HAL II Stage, Bangalore H.Siddaiah Road Haines Road HAL HAL 2nd Stage HAL 3rd Stage HAL Airport Road Hampi Nagar Hanumantha Nagar Hayes Road HBR Layout Hebbal Kempapura Hebbal Ring Road Hegde Nagar Heggana Halli Hennur Hesaraghatta HKP Road HMT Layout Hongasandra Hoody Horamavu Hosakere Halli photochemistry photooxidation piperidines polyanions polycations polycycles polymers Porphyrins prostaglandins protecting groups Entrance Coaching IIT Entrance Coaching CLAT Entrance Coaching AICEE Coaching TANCET Entrance Coaching PMT Entrance Coaching Language Classes Spoken English Classes Spoken Hindi Classes Foreign Languages Coaching Spoken Kannada Classes Spoken Gujarati Classes Competitive Exams Coaching KMAT Coaching Online CAT Coaching GATE Coaching IBPS Coaching RRB Coaching Civil Services Coaching UGC Net Coaching SSB & NDA Coaching UPSC Coaching IAS Coaching TNPSC Coaching Accounts & Finance CA Training PHP & MySQL Training Spring Training Web Designing Training Administration Training VMWare Training ITIL Training SharePoint Training SAN Training Linux Administration Training Database Training Data Warehousing Training Database Testing Training HADOOP Training Oracle DBA Training SQL Server Training Programming Languages Java & J2EE Training C C++ Training Perl Programming Training Python Programming Training Shell Scripting Training Mobile Development Training Android Development Training iPhone Development Training Mobile Application Testing Training Mobile Gaming Training Mobile Application Development Training Oakridge International School Oakridge International School, Sarjapur Road, , Bangalore School of India, Bannerghatta, Bangalore Delhi Public School DPS North Campus, Yelahanka, Bangalore Jain International Residential School (JIRS), Jakkasandra Post, Bangalore Delhi Public School (DPS East), Sarjapur, Bangalore TREAMIS World School, Electronics City, Bangalore South Delhi Public School (South), Kanakapura Road, Bangalore The Deen’s Academy, Whitefield, Bangalore National Public School (NPS), Koramangala, Bangalore Royale Concorde International School, Kalyan Nagar, Bangalore Freedom International School, HSR Layout, Bangalore Air Force School Army Public School Bangalore Military School BGS International School Cambridge Public School Delhi Public School Deva Matha Central School Jain International Residential School Kendriya Vidyalaya A M C School A.S.C Public School Amara Jyothi Public School Anand Shiksha Kendra ICSE Syllabus ACTS Secondary School B Mona High School Baldwin Boys High School Baldwin Girls High School Bishop Cotton Boys School Bishop Cotton Girls School Brigade School Candor International School Cambridge Public School Cathedral High School Chinmaya Vidyalay Christ Academy Ekya School Gnan Srishti School of Excellence Gopalan National School India International School IIS Lawrence School-ICSE New Horizon Public School Notre Dame Academy Paradise Residential School Patel Public School Podar International School Prakriya Green Wisdom School Primus School Ryan International School Sishu Griha St. Francis De Sales (SFS) High School Sherwood High Sri Kumaran Childrens Home St Francis School St Johns High School St Thomas Public School St. Patricks Academy St. Peters School Vibgyor High CBSE Syllabus AECS Magnolia Maaruti Public School Amaatra Academy Amrita Vidyalayam BGS-NPS School Brigade School BRS Global Centre for Excellence Capitol Public School CMR National Public School Delhi Public School East, South, North Edify School EuroSchool Freedom International School Geethanjali Montessori Geethanjali Vidhyalaya Gitanjali International School GISB Greengrove International School Gomathy Global School Harvest International School JSS Public School Kendriya Vidyalaya KV Manipal Tattva School Mirambika School for New Age NITTE International School National Centre for Excellence NCFE National Public School New Horizon Gurukul NHG Oakridge International School Presidency School PSBB LLA Padma Seshadri Bal Bhavan Radcliffe School Ravindra Bharathi Global School Sadhguru Sainath International School SSI Sri Kumaran Childrens Home Sunrise International Residential School Sujaya School The Samhita Academy Vagdevi Vilas School Venkat International Public School VIPS Vyasa International School Zee School IGCSE Syllabus Asia Pacific World School Krupanidhi Cambridge International School Candor International School Ekya School Gitanjali International GISB Greengrove International School Gomathy Global School Gopalan International School Harvest International School India International School (IIS) Oakridge International School Primus School Shibumi Trio World School International Baccalaureate IB Candor International School Oakridge International School (IB-PYP) State Board Amaatra Academy Lawrence School-State Board Paradise Residential School Primus School St. Francis De Sales (SFS) High School Sri Kumaran Childrens Home St Francis School Vagdevi Vilas School Special Schools Sri Rakum School for the blind Mirambika School for New Age Sri Aurobindo Shibumi (J. Krishnamurthi Aurinko Academy Chetana Kini Institute Samarthanam Residential School XSeed Schools Mirambika School New Age Sri Aurobindo Mother Teresa Public School curriculum Chrysalis High List of Schools Achievers International Academy ACTS Secondary School Amaatra Academy Amar Jyothi School Amrita Vidyalayam Army Public School Asia Pacific World School Aurinko Academy B Mona High School Baldwin Boys High School Baldwin Girls High School Bangalore International School Bangalore School Bethany High Bethany Junior School BGS-NPS School Bishop Cotton Boys School Bishop Cotton Girls School Brigade School British International School BRS Global Centre for Excellence BVM Global Cambridge Public School Candor International School Capitol Public School Cathedral High School Chinmaya Vidyalaya Christ Academy Chrysalis High CMR National Public School Delhi Public School Deva Matha Central School Edify School Ekya School EuroSchool Freedom International School Gear School Geethanjali Montessori Geethanjali Vidhyalaya Gitanjali International (GISB) Global Indian International School Gnan Srishti School Gomathy Global School Gopalan School Green County Public School Greengrove International School Greenwood High Harvest International School India International School Innisfree House School JSS Public School Kendriya Vidyalaya (KV) Lawrence School ICSE Lawrence School-State Magnolia Maaruti Public School Manipal Tattva School Mirambika School for New Age Mother Teresa Public School National Centre for Excellence National Hill View Public School National Public School New Horizon Gurukul New Horizon Public School Nitte International School Notre Dame Academy Oakridge International School Oxford Public School Parachute Regiment School Paradise Residential School Patel Public School Podar International School Prakriya Green Wisdom School Presidency School Primus School PSBB LLA Radcliffe School Ravindra Bharathi Global School Ryan International School Sadhguru Sainath International School Samarthanam Residential School SFS High School Sherwood High Shibumi Silver Oaks Sishu Griha Sri Chaitanya Techno School Sri Kumaran Childrens Home Sri Rakum School for the blind St Francis School St Johns High School St Mira School St Thomas Public School St. Patrick’s Academy St. Peters School Sujaya School Sunrise International Residential School The Samhita Academy Trio World School Vagdevi Vilas School Venkat International Public School Vibgyor High Vidyaniketan School Vyasa International School Whitefield Global School Xseed Pre-School Zee School
Primary Years Programme Colegio Anglo Mexicano MEXICO Milgate Primary School, AUSTRALIA Diploma Programme Australian International School Indonesia Pejaten Campus INDONESIA Instituto Educativa Fiscomisional Celina Vivar Espinosa, ECUADOR Unidad Educativa Juan de Salinas, ECUADOR Primary Years Programme Academia Moderna Charter, UNITED STATES Beacon School BRAZIL Dr. Orlando Edreira Academy, School 26, UNITED STATES Westhill Institute Carpatos Elementary Campus, MEXICO Westhill Institute, S.C. MEXICO Middle Years Programme Cooper Academy, UNITED STATES European International School VIETNAM Mark Bills Middle School UNITED STATES Mount Washington School UNITED STATES UCSI International School MALAYSIA Diploma Programme Cass Technical High School, UNITED STATES Colegio Experimental Juan Montalvo, ECUADOR Colegio Miguel Moreno Ordoñez de Cuenca ECUADOR Colegio Nacional Ibarra ECUADOR Colegio Nacional Mariano Benítez ECUADOR Colegio Nacional Velasco Ibarra, ECUADOR Colegio Nacional Veracruz, ECUADOR Colegio Pedro Vicente Maldonado ECUADOR Colegio Técnico 12 de Febrero, ECUADOR Colegio Técnico Fiscomisional Ecuador Amazónico, ECUADOR Colegio de Bachillerato Limón ECUADOR King Fahd Academy Bonn GERMANY Saudi Schools Moscow RUSSIAN FEDERATION Unidad Educativa 17 de Julio ECUADOR Unidad Educativa 12 de Febrero ECUADOR Unidad Educativa Bernardo Valdivieso ECUADOR Unidad Educativa Dayuma ECUADOR Unidad Educativa Federico González Suárez ECUADOR Unidad Educativa Fiscomisional Fray Bartolomé de las Casas ECUADOR Unidad Educativa Fiscomisional Juan Pablo II ECUADOR Unidad Educativa Fiscomisional San José de Calasanz ECUADOR Unidad Educativa León Ruales ECUADOR Unidad Educativa Nacional Napo ECUADOR Unidad Educativa Temporal Camilo Gallegos Dominguez ECUADOR Unidad Educativa Temporal Manuel Córdova Galarza ECUADOR Primary Years Programme Campus International School, UNITED STATES Carl Hankey K-8 School UNITED STATES Christa McAuliffe Elementary School UNITED STATES Goethe International Charter School , UNITED STATES Hammond Eastside Elementary Magnet School, UNITED STATES Hawthorne Elementary School UNITED STATES Idlewild Elementary School, UNITED STATES J. Colin English Elementary UNITED STATES Jose de Escandon Elementary, UNITED STATES Lincoln Elementary School, UNITED STATES Qingdao Amerasia International School CHINA Roland Park K-8 Magnet School for International Studies, UNITED STATES Theodore Roosevelt Elementary School, UNITED STATES Woodrow Wilson Elementary UNITED STATES Middle Years Programme Cache La Poudre Middle School, UNITED STATES Carl Hankey K-8 School, UNITED STATES Cedar Shoals High School UNITED STATES Concord High School, UNITED STATES Harry Stone Montessori Academy, UNITED STATES International School of Monterey, UNITED STATES Johnnie R. Carr Middle School, UNITED STATES Prairie Seeds Academy, UNITED STATES Roland Park K-8 Magnet School, UNITED STATES Sterling Middle School UNITED STATES The Aga Khan Academy, Hyderabad, INDIA Diploma Programme Ausangate Bilingual School PERU Author’s School Istochnik RUSSIAN FEDERATION Colegio Fiscal Técnico El Chaco ECUADOR Colegio Juan Bautista Montini ECUADOR Colegio Nacional Ciudad de Cuenca ECUADOR Colegio Nacional Experimental Salcedo, ECUADOR Colegio Nacional Machachi, ECUADOR Colegio Nacional Mixto El Playon, ECUADOR Colegio Técnico Cascales, ECUADOR Dar al Marefa Private School, UNITED ARAB EMIRATES Escola Internacional del Camp SPAIN Gymnasium Jovan Jovanovic Zmaj SERBIA ISTEK Private Acibadem Schools TURKEY Instituto Superior Tecnológico Carlos Cisneros ECUADOR Instituto Superior Tecnológico Daniel Alvarez Burneo ECUADOR Instituto Técnico Superior Isabel de Godin ECUADOR King Abdulaziz Saudi School Rome ITALY Riga State Gymnasium Nr. 2 LATVIA Saudi School Vienna AUSTRIA State IS Seeheim Jugenheim/Schuldorf Bergstrasse GERMANY Unidad Educativa Bolívar, ECUADOR Unidad Educativa Abelardo Moncayo, ECUADOR Unidad Educativa Fiscomisional Verbo Divino, ECUADOR Unidad Educativa Mayor ECUADOR Unidad Educativa Nueva Semilla, ECUADOR Unidad Educativa Temporal Juan Bautista Vásquez, ECUADOR Primary Years Programme Ajman Academy UNITED ARAB EMIRATES British International School Kiev UKRAINE Cache La Poudre Elementary School, UNITED STATES Dr. Thomas S. O Connell Elementary School UNITED STATES Gems World Academy Abu Dhabi UNITED ARAB EMIRATES Hebron-Harman Elementary School, UNITED STATES International School of Solothurn, SWITZERLAND Lisa-Junior Primary School AUSTRIA Madison Richard Simis Elementary School, UNITED STATES Miina Härma Gümnaasium, ESTONIA Riffenburgh Elementary School UNITED STATES Roscoe Wilson Elementary School, UNITED STATES Singapore International School INDIA William H. Wharton K-8 Dual Language Academy UNITED STATES World Academy of Tirana, ALBANIA École Centrale, CANADA École Micheline-Brodeur CANADA École Saint-Édouard, CANADA École élémentaire catholique Jean-Paul II CANADA Özel Istanbul Coskun Koleji Anaokulu & Ilkokulu TURKEY Middle Years Programme Abraham Lincoln Middle School UNITED STATES Beijing Huijia Private School CHINA Cakir Middle School TURKEY Durango High School UNITED STATES Emirates IS Meadows, UNITED ARAB EMIRATES Madison International School, MEXICO Meadow Park Middle School, UNITED STATES North Central High School, UNITED STATES Phuket International Academy Day School THAILAND Ray Wiltsey Middle School UNITED STATES Rockridge Secondary School CANADA School Lane Charter School UNITED STATES Strothoff International School Rhein-Main Campus Dreieich GERMANY Tsukuba International School JAPAN École Père-Marquette, CANADA École secondaire Saint-Luc, CANADA Diploma Programme Anania Shirakatsy Armenian National Lyceum Ed’l Complex-CJSC, ARMENIA COLEGIO ALAUDA SPAIN Colegio Británico, MEXICO Colegio Nacional Camilo Gallegos Toledo ECUADOR Colegio Nacional Experimental Amazonas, ECUADOR Colegio Nacional Experimental María Angélica Idrobo, ECUADOR Colegio Nacional San José, ECUADOR Eastern Mediterranean International School, ISRAEL Emirates National School UNITED ARAB EMIRATES GEMS American Academy Abu Dhabi, UNITED ARAB EMIRATES German International School Sharjah UNITED ARAB EMIRATES Instituto Tecnológico Superior Angel Polibio Chaves, ECUADOR International School Moshi Arusha Campus TANZANIA, UNITED REPUBLIC OF International School of Bydgoszcz POLAND Ludoteca Elementary & High School, Padre Víctor Grados, ECUADOR Léman International School Chengdu CHINA Metropolitan School of Panama, PANAMA Munic. Atms. Educ. Institution Kogalym Secondary School ?8, RUSSIAN FEDERATION Phorms Bilingual Gymnasium, GERMANY Royal High School, UNITED STATES SIS Swiss International School Stuttgart-Fellbach, GERMANY Seedling Public School INDIA The British School of Beijing CHINA Unidad Educativa Fiscal Experimental del Milenio, ECUADOR Unidad Educativa Juan de Velasco ECUADOR Unidad Educativa Tumbaco, ECUADOR École secondaire Gaétan Gervais, CANADA École secondaire Hanmer CANADA Stonehill International School American School of Bombay Mumbai Day school offering PYP MYP DP Dhirubhai Ambani International School Mumbai Day school offering DP Ecole Mondiale World School, Mumbai Day school offering DP Jamnabai Narsee School Mumbai Day school offering DP Ahmedabad International School Ahmedabad Day School offering PYP Mahatma Gandhi International School Ahmedabad Day school offering MYP Mahindra United World College of India Pune Boarding school offering DP Mercedes-Benz International School Pune American Embassy School Delhi Day school offering DP The British School, Delhi Day school offering DP Pathways World School, Gurgaon Boarding school offering PYP DP SelaQui World School, Dehra Dun Boarding school offering DP Canadian International School, Bangalore Mixed Boarding Day school offering DP International School of Bangalore, Bangalore Mixed Boarding Day school offering DP Oakridge International School Hyderabad Day school offering PYP Chinmaya International Residential School Coimbatore Boarding school offering DP Good Shepherd International School Ooty Boarding school offering DP Kodaikanal International School, Kodaikanal Boarding school offering DP Home Tuition Group teachers available small groupsstudents IB International Baccalaureate Programme, IGCSE, ISc, ICSE, CBSE Schools offering IB ( International Baccalaureate ) Programme Bangalore International School Geddalahalli Hennur Bagalur Road Kothanur Post Bengaluru India 560 077 Stonehill International School, 1st Floor, Embassy Point #150, Infantry Road Bengaluru 560 001 Stonehill International School 259/333/334/335 Tarahunise Post Jala Hobli, Bengaluru North 562157 Candor International School Begur Koppa Road, Hullahalli Off Bannerghatta Road, Near Electronic City Bangalore 560105 Greenwood High International School Bengaluru, No.8-14, Chickkawadayarapura, Near Heggondahalli Gunjur Post, Varthur Sarjapur Road, Bangalore 560087 Sarla Birla Academy, Bannerghatta, Bangalore, Canadian International School, Yelahanka, Bangalore Indus International School Billapura Cross Sarjapur Bangalore


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s