NCERT CBSE Standard 12 d and f Block Transition elements Chapter 8 Inorganic Chemistry

Please Visit our new Website here

1-Teacher-3 1-Teacher-5

Learn more at http://skmclasses.weebly.com/iit-jee-home-tuitions-bangalore.html

z 2 SKMClasses Black background logo

search for videos in http://skmclasses.weebly.com

Twitterhttps://twitter.com/ZookeeperPhy

Facebookhttps://www.facebook.com/IIT.JEE.by.Prof.Subhashish/

Bloghttp://skmclasses.kinja.com

1-Teacher-15 1-SKM-Class-net-1

Chemistry Physics Mathematics personal tuitions ( also Home Tuitions / Coaching by Home Tutor with personal Attention ) are available in the Bannerghatta Road IIM ( south Bangalore ) region.

Contact mokshya@gmail.com

Prof. Subhashish and others are teaching ISEET Chemistry, Maths, Physics, AIEEE/IIT-JEE, CET and PU courses

Teacher-1 1-Subhashish-Electrostatics-2

Students staying in J P Nagar, Bommanahalli, Nayak Layout, Poornima Nagar, Aradhana Layout, Shreyas Colony, Devarachikkahalli, Rukmaiah Layout, Viswapriya Nagar, Akshayanagar, Omkar Nagar, BTM, Shanthiniketan Layout, Madivala, Teacher’s Colony, Hogasandra, MICO Layout, Fortis Hospital, Anjanadri Layout, Apollo Hospital, Royal Lake Front, Royal Residency, Jayanagar, Vijaya Enclave, Sundaram Shetty Nagar, Duo Heights, Arekere, Begur Road, L&T South city, Dollar colony, Brigade Millennium, Kumaraswami Layout, Jarganahalli, Bendre Nagar, Srinidhi Layout, Mysore Bank Colony, Ramaiah Garden, Nobo Nagar, Adigas Restaurant Bannerghatta Road, Shankranthi Layout, Sarvabhouma Nagar, BTS Layout, Ayyappa Temple Shoba Apartments, Anugraha Layout, Neo Layout, Mahaveer Rhyolities, Akshaya Nagar, DLF Extention, new Dollar Colony,   etc can easily access this.

The schools and Institutions near by are Mitra Academy, St Pauls – Presidency School and College, Clarence High School, PSBB, Ryan International School, Sarala Birla Academy, BGS NPS,Brigade school, Shantiniketan, MG Infant, Deeksha Hosur Road, Nightingles English Highschool, Sri Venkateshwara Education Society, Oxford Engineering College, Lorven International Institute, Hill Top School, Karnataka Govt. High School, Christ Academy Hulahalli Koppa Road, Salonee School, Royal Convent School, St Francis School, Teresa Public School, Maaruthi Magnolia etc.

Must see https://zookeepersblog.wordpress.com/some-points-which-i-wish-all-my-new-prospective-students-know/

 

:-)

Simplified Knowledge Management Classes

Must see https://zookeepersblog.wordpress.com/some-points-which-i-wish-all-my-new-prospective-students-know/
:-)

e-Book-e-Book-e-Book-e-Book-e-Book-e-Book-e-Book-e-Book–e-Book–e-Book–e-Book

Did you like the Facebook Page of SKMClasses ?

Please Like the page https://www.facebook.com/IIT.JEE.by.Prof.Subhashish/

Did you send Friend request to Professor Subhashish Chattopadhyay ?

Please first send friend request to profile https://www.facebook.com/Subhashish.SKMClasses

You are allowed to download books only after liking the SKMClasses Page and sending friend request to Subhashish Sir.

Download the following FREE pdf e-Books ( Chapter wise / Topic wise solutions, Written by Prof. Subhashish Chattopadhyay SKMClasses Bangalore )

Everything can be searched in the net. Someone can know and find; if he wants to. Yet information at a single place helps. In fact organized information communicates much better. For IIT results analysis, performance of Girls, perceptions and priorities of various people in various regions of India see

IIT JEE Results and the situation in Bangalore by Prof. Subhashish    ( Download )

( Click on the links to open the PDF in a new tab, then Save / Download )

IIT-JEE, NCERT / CBSE, I.Sc., PU, Board exam, EAMCET, BITS Physics Books with lots of Examples ( Free pdf download of Physics Books, Chapter wise / Topic wise Questions and Solutions )

43 ] Formulae of Force ( or Formulas of Force; as Americans Like to call it )

There are around 70 formulae ( or formulas; as Americans call it ) for Force. This book covers these with many examples.
1 ) Force = mass X acceleration
2 ) Gravitational Attraction Force = G M1 M2 by Distance Square

3 ) Rate of change of Momentum is Force. So Momentum will be conserved ( this means momentum will remain same ) if no external force is acting.
or
Vf is final velocity and Vi is initial velocity and Δt is the time elapsed.
4 ) Gravitational attraction ( force ) on Earth is F = m X g where g is acceleration due to gravity
5 ) Centrifugal Force
6 ) Tension as Centripetal Force
7 ) Friction as Centripetal Force
8 ) Friction Forces in various situations
9 ) Force due to Magnetic field on a moving charge ( as Centripetal force )
10 ) Force of Electrostatic Attraction and Electrostatic repulsion
11 ) Force = Charge x Electric field
12 ) Force of Attraction between to Permanent Magnets
13 ) Viscous drag of air
14 ) Buoyant Force
15 ) Pressure = Force / Area
16 ) Young’s Modulus = Stress / Strain
17 ) Moment = distance x Force
18 ) Force of Magnetic field in a Current Carrying wire of length L = i L x B
19 ) Coriolis Force
20 ) Force on a Fan rotating
21 ) Force of attraction in between two wires carrying current in same direction
22 ) Spring pulled by distance x needs Force = k x where k is spring constant
23 ) speed of wave = √( Tension in string / µ ) where µ = mass per unit length
24 ) Surface Tension x length = Force
25 ) Casimir Force
26 ) Shear force
27 ) Hoop stress in ring made of n bids rotating at ω
28 ) Hoop stress in ring made of mass m rotating at ω
29 ) Hoop stress in plastic ring with charge Q radius R and charge q at center
30 ) Hoop stress in pipe carrying liquid at speed v of density ρ
31 ) Stress in a rod when rotated at angular speed ω
32 ) Tension in Catenaries
33 ) Force of Attraction at a height
34 ) Force of Attraction at a depth
35 ) Tension force in Static Problems
36 ) Compression force related to Bulk Modulus
37 ) Force in the middle of a pressurized Ball
38 ) Excess Pressure in bubble with two surfaces
39 ) Excess Pressure in Bubble with single surface
40 ) Force on a wall due to multiple balls being thrown
41 ) Force on a wall due to water Jet
42 ) Force and Pressure due to light
43 ) Force of attraction between two charged plates
44 ) Force and Electric field due to charged cylinder
45 ) Approximate restoring force in a pendulum
46 ) Force by which a dielectric is pulled in; between charged plates
47 ) Force by which dielectric liquid rises to some height in between charged plates kept horizontally
48 ) Force by which dielectric liquid rises to some height in between charged plates kept vertically
49 ) Force due to rise of dielectric liquid in concentric charged cylinder
50 ) Force on moving charge due to another moving charge
51 ) Force on a moving rocket losing mass by ejecting gases
52 ) Calculating force when viscous drag is proportional to v to the power p
53 ) Strong Force between Quarks
54 ) Weak Force causing Radioactivity
55 ) Van der Waal Forces
56 ) Keesom Force
57 ) Debye Force
58 ) London Forces
59 ) Dispersion Forces
60 ) Dipole – Dipole Forces

See https://archive.org/search.php?query=professor+Subhashish&sort=-date

and https://archive.org/search.php?query=skmclasses&sort=-date

and https://archive.org/details/FormulaeForForceByProf.SubhashishChattopadhyayForICSECBSEIITJEECETIGCSE

:-{D

42 ]  CBSE & IIT-JEE Physics Survival Guide – Dispersion of Light in Prisms and lenses, Correction of Spherical, Chromatic Aberrations etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide –  Dispersion of Light in Prisms and lenses, Correction of Spherical, Chromatic Aberrations etc Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide –  Dispersion of Light in Prisms and lenses, Correction of Spherical, Chromatic Aberrations etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of  Dispersion of Light in Prisms and lenses, Correction of Spherical, Chromatic Aberrations etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

Dispersion of Light – Achromatic combination of Prisms & Lenses by Prof. Subhashish Chattopadhyay

:-{D

41 ]  CBSE & IIT-JEE Physics Survival Guide – Collision, Momentum, Elastic & Inelastic Collision etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Collision, Momentum, Elastic & Inelastic Collision Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Collision, Momentum, Elastic & Inelastic Collision Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Collision, Momentum, Elastic & Inelastic Collision Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-collision-momentum-by-prof-subhashish-chattopadhyay

:-{D

40 ]  CBSE & IIT-JEE Physics Survival Guide – X Ray, Rontgen, Moseley Proton Discovery etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – X Ray, Rontgen, Moseley Proton Discovery Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – X Ray, Rontgen, Moseley Proton Discovery Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of X Ray, Rontgen, Moseley Proton Discovery Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-x-ray-by-prof-subhashish-chattopadhyay

:-{D

39 ]  CBSE & IIT-JEE Physics Survival Guide – Thermionic Emission of Electrons, Edison Effect, Richardson’s law, Schottky emission, Thomson Effect, Joule Thomson Kelvin Effect, etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Thermionic Emission of Electrons, Edison Effect, Richardson’s law, Schottky emission, Thomson Effect, Joule Thomson Kelvin Effect, Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Thermionic Emission of Electrons, Edison Effect, Richardson’s law, Schottky emission, Thomson Effect, Joule Thomson Kelvin Effect, Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Thermionic Emission of Electrons, Edison Effect, Richardson’s law, Schottky emission, Thomson Effect, Joule Thomson Kelvin Effect Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-thermionic-emission-of-electrons-by-prof-subhashish-chattopadhyay

:-{D

38 ] CBSE & IIT-JEE Physics Survival Guide – Heat & Thermodynamics, Latent Teat, Thermodynamics, PV Diagram, P-V Diagram, Polytropic Process, Isobaric Process, Isochoric Process, PT Diagram, P-T Diagram, Entropy, Enthalpy, VT Diagram, V-T Diagram, Engine, Carnot, Efficiency, Refrigerator, Refrigeration Constant, Refrigeration Ratio, Sink, Source, Heat Source, Heat Sink, Free expansion, PV=nRT, Ideal, Ideal gas, Adiabatic  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Heat & Thermodynamics, Latent Teat, Thermodynamics, PV Diagram, P-V Diagram, Polytropic Process, Isobaric Process, Isochoric Process, PT Diagram, P-T Diagram, Entropy, Enthalpy, VT Diagram, V-T Diagram, Engine, Carnot, Efficiency, Refrigerator, Refrigeration Constant, Refrigeration Ratio, Sink, Source, Heat Source, Heat Sink, Free expansion, PV=nRT, Ideal, Ideal gas, Adiabatic Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Heat & Thermodynamics, Latent Teat, Thermodynamics, PV Diagram, P-V Diagram, Polytropic Process, Isobaric Process, Isochoric Process, PT Diagram, P-T Diagram, Entropy, Enthalpy, VT Diagram, V-T Diagram, Engine, Carnot, Efficiency, Refrigerator, Refrigeration Constant, Refrigeration Ratio, Sink, Source, Heat Source, Heat Sink, Free expansion, PV=nRT, Ideal, Ideal gas, Adiabatic Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Heat & Thermodynamics, Latent Teat, Thermodynamics, PV Diagram, P-V Diagram, Polytropic Process, Isobaric Process, Isochoric Process, PT Diagram, P-T Diagram, Entropy, Enthalpy, VT Diagram, V-T Diagram, Engine, Carnot, Efficiency, Refrigerator, Refrigeration Constant, Refrigeration Ratio, Sink, Source, Heat Source, Heat Sink, Free expansion, PV=nRT, Ideal, Ideal gas, Adiabatic Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-heat-thermodynamics-by-prof-subhashish-chattopadhyay

:-{D

37 ] CBSE & IIT-JEE Physics Survival Guide – Peltier Effect  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Peltier Effect Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Peltier Effect Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Peltier Effect Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-peltier-effect-by-prof-subhashish-chattopadhyay

:-{D

36 ] CBSE & IIT-JEE Physics Survival Guide – Seebeck Effect  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Seebeck Effect Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Seebeck Effect Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Seebeck Effect Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-seebeck-effect-by-prof-subhashish-chattopadhyay

:-{D

35 ] CBSE & IIT-JEE Physics Survival Guide – Thermal Radiation, Stefan Boltzmann Law, Wien ‘s Law  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Thermal Radiation, Stefan Boltzmann Law, Wien ‘s Law Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Thermal Radiation, Stefan Boltzmann Law, Wien ‘s Law Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Thermal Radiation, Stefan Boltzmann Law, Wien ‘s Law Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-thermal-radiation-wien-s-law-by-prof-subhashish-chattopadhyay

:-{D

34 ] CBSE & IIT-JEE Physics Survival Guide – Thermometry History, Methods, Numericals, Tricks & Techniques  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Thermometry History, Methods, Numericals, Tricks & Techniques Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Thermometry History, Methods, Numericals, Tricks & Techniques Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Thermometry History, Methods, Numericals, Tricks & Techniques Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-thermometry-by-prof-subhashish-chattopadhyay

:-{D

33 ] CBSE & IIT-JEE Physics Survival Guide – Modelling Techniques, Application of Integral Calculus in Physics Problems and Modelling, Advance Concept of Edge Correction etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Modelling Techniques, Application of Integral Calculus in Physics Problems and Modelling, Advance Concept of Edge Correction Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Modelling Techniques, Application of Integral Calculus in Physics Problems and Modelling, Advance Concept of Edge Correction Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Modelling Techniques, Application of Integral Calculus in Physics Problems and Modelling, Advance Concept of Edge Correction Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-modelling-with-integral-calculus-by-prof-subhashish-chattopadhyay

:-{D

32 ] CBSE & IIT-JEE Physics Survival Guide – Newton ‘s Law of Cooling etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Newton ‘s Law of Cooling Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Newton ‘s Law of Cooling Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Newton ‘s Law of Cooling Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-newton-s-law-of-cooling-by-prof-subhashish-chattopadhyay

:-{D

31 ]  CBSE & IIT-JEE Physics Survival Guide – Thermal Expansion etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Thermal Expansion Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Thermal Expansion Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Thermal Expansion Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-thermal-expansion-by-prof-subhashish-chattopadhyay

:-{D

30 ] CBSE & IIT-JEE Physics Survival Guide – Surface Tension  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Surface Tension Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Surface Tension Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Surface Tension Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-surface-tension-by-prof-subhashish-chattopadhyay

:-{D

29 ] CBSE & IIT-JEE Physics Survival Guide – Mechanics & Laws of Motion  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Mechanics & Laws of Motion Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Mechanics & Laws of Motion Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Mechanics & Laws of Motion Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-mechanics-by-prof-subhashish-chattopadhyay

:-{D

28 ] CBSE & IIT-JEE Physics Survival Guide – Viscosity & Viscous Drag  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Viscosity & Viscous Drag Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Viscosity & Viscous Drag Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Viscosity & Viscous Drag Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-viscosity-by-prof-subhashish-chattopadhyay

:-{D

27 ]  CBSE & IIT-JEE Physics Survival Guide – Thermal Properties of Solids, or Thermal Properties of Material, Thermal Conductivity  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Thermal Properties of Solids, or Thermal Properties of Material, Thermal Conductivity Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Thermal Properties of Solids, or Thermal Properties of Material, Thermal Conductivity Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Thermal Properties of Solids, or Thermal Properties of Material, Thermal Conductivity Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-thermal-properties-of-solids-by-prof-subhashish-chattopadhyay

:-{D

26 ] CBSE & IIT-JEE Physics Survival Guide – Buoyant Force, Buoyancy, Discussions on Layer of Liquid below the Object  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Buoyant Force, Buoyancy, Discussions on Layer of Liquid below the Object Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Buoyant Force, Buoyancy, Discussions on Layer of Liquid below the Object Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Buoyant Force, Buoyancy, Discussions on Layer of Liquid below the Object Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-buoyant-force-by-prof-subhashish-chattopadhyay

:-{D

25 ] CBSE & IIT-JEE Physics Survival Guide – Mechanical Properties of Material, Mechanical Properties of Solids, Young ‘s Modulus, Bulk Modulus, Poisson ‘s Ratio, Shear Stress, Strain, Energy Stored in elongated wire  etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Mechanical Properties of Material, Mechanical Properties of Solids, Young ‘s Modulus, Bulk Modulus, Poisson ‘s Ratio, Shear Stress, Strain, Energy Stored in elongated wire Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Mechanical Properties of Material, Mechanical Properties of Solids, Young ‘s Modulus, Bulk Modulus, Poisson ‘s Ratio, Shear Stress, Strain, Energy Stored in elongated wire Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Mechanical Properties of Material, Mechanical Properties of Solids, Young ‘s Modulus, Bulk Modulus, Poisson ‘s Ratio, Shear Stress, Strain, Energy Stored in elongated wire Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-mechanical-properties-of-solids-by-prof-subhashish

:-{D

24 ] CBSE & IIT-JEE Physics Survival Guide – Kinetic Theory of Gases etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Kinetic Theory of Gases Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Kinetic Theory of Gases Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Kinetic Theory of Gases Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-kinetic-theory-of-gasess-by-prof-subhashish-chattopadhyay

:-{D

23 ] CBSE & IIT-JEE Physics Survival Guide – Vectors & Scalars etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Vectors & Scalars Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Vectors & Scalars Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Vectors & Scalars Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-vectors-scalars-by-prof-subhashish-chattopadhyay

:-{D

22 ] CBSE & IIT-JEE Physics Survival Guide – Units, Dimensions, Measurements & Errors etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide –  Units, Dimensions, Measurements & Errors Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Units, Dimensions, Measurements & Errors Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Units, Dimensions, Measurements & Errors Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-units-dimensions-by-prof-subhashish-chattopadhyay

:-{D

21 ] CBSE & IIT-JEE Physics Survival Guide – Kinematics, Dynamics or Kinetics, Circular Motion & Projectile Motion etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide –  Kinematics, Dynamics or Kinetics, Circular Motion & Projectile Motion Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Kinematics, Dynamics or Kinetics, Circular Motion & Projectile Motion Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Kinematics, Dynamics or Kinetics, Circular Motion & Projectile Motion, Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-kinematics-by-prof-subhashish-chattopadhyay

:-{D

20 ] CBSE & IIT-JEE Physics Survival Guide – Measuring Speed of Light, Various Methods etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Measuring Speed of Light, Various Methods by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Measuring Speed of Light, Various Methods etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Measuring Speed of Light, Various Methods etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-speed-of-light-by-prof-subhashish-chattopadhyay

:-{D

19 ] CBSE & IIT-JEE Physics Survival Guide – Maxwell ‘s Equations, Electromagnetic Waves etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Maxwell ‘s Equations, Electromagnetic Waves by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Maxwell ‘s Equations, Electromagnetic Waves etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Maxwell ‘s Equations & Electromagnetic Waves etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-maxwells-equations-electromagnetic-waves-by-prof-subhashish

:-{D

18 ] CBSE & IIT-JEE Physics Survival Guide – Magnetism History etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Magnetism History by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Magnetism History etc by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Magnetism History etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-magnetism-by-prof-subhashish-chattopadhyay

:-{D

17 ] CBSE & IIT-JEE Physics Survival Guide – Magnetic Induction, Voltage Produced etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Magnetic Induction, Voltage Produced by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Magnetic Induction, Voltage Produced by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Magnetic Induction, Voltage Produced etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-magnetic-induction-by-prof-subhashish-chattopadhyay

:-{D

16 ] CBSE & IIT-JEE Physics Survival Guide – Magnetic Effects of Current etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Magnetic Effects of Current by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Magnetic Effects of Current by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Magnetic Effects of Current, Various Derivations etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-magnetic-effect-of-current-by-prof-subhashish-chattopadhyay

:-{D

15 ] CBSE & IIT-JEE Physics Survival Guide – Capacitance Dielectrics & Circuits etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Capacitance Dielectrics & Circuits by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Capacitance Dielectrics & Circuits by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Capacitance, Trick Circuits, Combinations of Dielectrics, Various Derivations etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-capacitance-by-prof-subhashish-chattopadhyay

:-{D

14 ] CBSE & IIT-JEE Physics Survival Guide – Electrostatics & Gauss Theorem etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Electrostatics & Gauss Theorem by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Electrostatics & Gauss Theorem by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Electrostatics, Gauss Theorem, Various Derivations etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-electrostatics-gauss-theorem-by-prof-subhashish-chattopadhyay

:-{D

13 ] CBSE & IIT-JEE Physics Survival Guide – Center of Mass etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Center of Mass by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Center of Mass by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Center of Mass, Various Derivations etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-center-of-mass-by-prof-subhashish-chattopadhyay

:-{D

12 ] CBSE & IIT-JEE Physics Survival Guide – Work Power Energy Variable Force Leaking Bucket etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Work Power Energy Variable Force Leaking Bucket by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Work Power Energy Variable Force Leaking Bucket by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Work Power Energy Variable Force Leaking Bucket, Various Derivations etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-work-power-energy-by-prof-subhashish-chattopadhyay

:-{D

11 ] CBSE & IIT-JEE Physics Survival Guide – Moment of Inertia, Solid Bodies Angular Momentum etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Moment of Inertia of Solid Bodies by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Moment of Inertia of Solid Bodies by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Moment of Inertia, Solid Bodies Angular Momentum, Rotational Energy, Derivations etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-moment-of-inertia-by-prof-subhashish-chattopadhyay

:-{D

10 ] CBSE & IIT-JEE Physics Survival Guide – Circular Motion, Conical Pendulum etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Circular Motion, Conical Pendulum etc and many complicated Problems by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Circular Motion by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Circular Motion. Conical Pendulum etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-circular-motion-by-prof-subhashish-chattopadhyay

:-{D

9 ] CBSE & IIT-JEE Physics Survival Guide – Solutions to Irodov Problems, by Subhashish Sir, and Other Professors.

cbse-iit-jee-physics-survival-guide-irodov-problems-solutions-by-prof-subhashish-others

:-{D

8 ] CBSE & IIT-JEE Physics Survival Guide – Electrical Circuits, Delta to Star Conversion, Current Source, Trick Circuits, Unbalanced Wheatstone Bridge, Steps and Techniques of Solving Electrical Circuits etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Electrical Circuits, Delta to Star Conversion, Current Source, Trick Circuits, Unbalanced Wheatstone Bridge, Steps and Techniques of Solving Electrical Circuits etc and many complicated Problems by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Gravitation by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Electrical Circuits, including Inductance & Capacitance, internal Resistance etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ‘s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-electrical-circuits-by-prof-subhashish-chattopadhyay

:-{D

7 ] CBSE & IIT-JEE Physics Survival Guide – Gravitation, Contrasting Comparisons of Gravitational Potential and Electrostatic Potential, Contrasting Comparisons of Gravitational Field and Electrostatic Field, Escape Velocity, Height attended by a mass thrown at various speeds etc  –  by Professor Subhashish Chattopadhyay, Bangalore.

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Gravitation, Contrasting Comparisons of Gravitational Potential and Electrostatic Potential, Contrasting Comparisons of Gravitational Field and Electrostatic Field, Escape Velocity, Height attended by a mass thrown at various speeds etc and many complicated Problems by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Gravitation by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Gravitation, Field, Potential, escape velocity etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ’s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-gravitation-by-prof-subhashish-chattopadhyay

:-{D

6 ] CBSE & IIT-JEE Physics Survival Guide – SHM Periodic Motion, Harmonic Oscillations with Solid Objects, Approximate Simple Harmonic Motions –  by Professor Subhashish Chattopadhyay, Bangalore

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – SHM ( Simple Harmonic Motion ) and many complicated Problems by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – SHM by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of SHM Approximate Oscillations etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma’s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

cbse-iit-jee-physics-survival-guide-shm-harmonic-oscillations-or-periodic-motion-by-prof-subhashish

:-{D

5 ] CBSE & IIT-JEE Physics Survival Guide – Sound Waves, Doppler Effect, Standing waves in Open Tube, Closed Tube, Rods or Bars by Professor Subhashish Chattopadhyay, Bangalore

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Sound Waves, Doppler Effect, Standing waves in Open Tube, Closed Tube, Rods or Bars by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Sound Waves, Oscillations in Wires by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Sound Waves, Doppler effect, Standing waves and Propagating Waves, Oscillations in Wires, Bars, Tubes ( both Open Tube and Closed Tube ) etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ’s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. Regarding the latest developments I wrote … “ GUT [ General Unified Theory ] is being modified to introduce a 5th fundamental force, because some heavy particles have been observed at CERN and various other experiments and Producing Gravitational waves at will, without mass, Madala Bosons to explain Dark Matter ”

cbse-iit-jee-physics-survival-guide-waves-and-sound-by-prof-subhashish

:-{D

4 ] CBSE & IIT-JEE Physics Survival Guide – Radio activity and Modern Physics by Professor Subhashish Chattopadhyay, Bangalore

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Radio activity and Modern Physics by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Radio activity and Modern Physics by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Radioactivity and Modern Physics. LASERS, Dirac Equation, Particle Physics, Diode, Triode, Transistor, Quantum Mechanics etc are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma ’s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE & IIT-JEE Physics Survival Guide-Radio activity and Modern Physics by Prof. Subhashish

:-{D

3 ] CBSE & IIT-JEE Physics Survival Guide – Mirrors Lenses Slabs Prisms Ray Diagram Problems – Optics by Professor Subhashish Chattopadhyay, Bangalore

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Mirrors Lenses Slabs Prisms Ray Diagram Problems Optics by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide – Mirrors Lenses Slabs Prisms Ray Diagram Problems  Optics by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Mirror Slab Prism Lenses Ray Diagram Problems & Solutions Optics. Silvered Slab, Silvered Lenses, Silvered prisms are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma’s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

In this eBook I wrote about my Personal Choice of, ” List of Best Experiments ” …

Michelson–Morley experiment proving there was no Aether, Moseley ‘s experiment with X-Rays to discover Protons, Jagadish chandra Bose demonstrating controlled emission / transmission and receiving of Radio waves, Casimir experiments to show Casimir forces of virtual particles, Eddington measuring bending of light, Flying atomic clocks in planes and confirming slowing down of time at high speeds, Victor Hess measured Radiation level variation at ground and high up in the atmosphere, Soviet physicist Sergey Vernov was the first to use radiosondes to perform cosmic ray readings with an instrument carried to high altitude by a balloon at heights up to 13.6 km, The proof of time dilation by Muon decay, Measurement of Space-time curvature near Earth and thereby the stress–energy tensor (which is related to the distribution and the motion of matter in space) in and near Earth , Detecting Gravitational Waves.

CBSE & IIT-JEE Physics Survival Guide-Mirrors Prisms Lens Slabs Optics by Prof. Subhashish

:-{D

2 ] CBSE & IIT-JEE Physics Survival Guide – Wave Optics by Professor Subhashish Chattopadhyay, Bangalore

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Wave Optics by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide- Wave Optics by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Wave Optics. Slabs, Silvered Slab, Lenses, Silvered Lenses, Prisms, Silvered prisms are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma’s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE & IIT-JEE Physics Survival Guide-Wave Optics by Prof. Subhashish

:-{D

1 ] CBSE & IIT-JEE Physics Survival Guide – Ray or Geometrical Optics by Professor Subhashish Chattopadhyay, Bangalore

Description – “ Spoon Feeding CBSE & IIT-JEE Physics Survival Guide – Ray or Geometrical Optics by Professor Subhashish Chattopadhyay ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Physics Survival Guide – CBSE & IIT-JEE Physics Survival Guide-Ray or Geometrical Optics by Professor Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Ray or Geometrical Optics. Slabs, Silvered Slab, Lenses, Silvered Lenses, Prisms, Silvered prisms are also covered. There are many kinds of Problems which are NOT covered in Professor H C Verma’s books ( Concepts of Physics ) or Irodov, or ” Resnick & Halliday “. Some examples being split Lenses, Fresnel’s Biprism, Polytropic Processes, Silvered lenses, Slab with a lens like hole or filled with liquids, Cylindrical lenses, isodiaphers, Spallation Reaction, Magic Numbers, Doubly Magic Numbers, Metamaterials with Negative Refractive Index etc. All these kinds of Questions which have been asked in various exams are covered in eBooks of Professor Subhashish Chattopadhyay. Several Complicated examples and many more, and various incomplete dictionary kinds of collection for Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE & IIT-JEE Physics Survival Guide-Ray or Geometrical Optics by Prof. Subhashish

:-{D

Nima Arkani-Hamed has written a beautiful paper on ” The Future of Fundamental Physics “
We are too used to see ‘daily news ‘ which changes everyday. Often many of us start thinking or imagining Progress in Science and / or technology will also happen at that speed. Searching the net for future trends, every hour, actually wastes time, rather than teaching us anything. Slow long term prediction is difficult to do. These predictions does not change much. It needs very deep understanding of the present trends, to write about future.

nima AH

:-{D

IIT-JEE, NCERT / CBSE, I.Sc., PU, Board exam, EAMCET, BITS Chemistry Books with lots of Examples ( Free pdf download of Chemistry Books, Chapter wise / Topic wise Questions and Solutions )

8 ] CBSE 12 & IIT-JEE Chemistry Survival Guide – Stoichiometry Titration by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Stoichiometry Titration ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Chemistry Survival Guide – Stoichiometry Titration by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers several examples of Stoichiometry Titrations, Heating effects in several salts, colours or colors of the precipitates, Empirical formulae calculation, Limiting reagents, Titration examples, Equivalent weight, milli-equivalent weight, What mass or moles is reacting with how much ? How much is oxidised ? How much is Reduced ? Several Complicated examples and many more, and various incomplete dictionary kinds of collection for  Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE 12 & IIT-JEE Chem Survival Guide-Stoichiometry Titration by Prof. Subhashish

:-{D

7 ] CBSE 12 & IIT-JEE Chemistry Survival Guide – Redox Reactions by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Redox Reactions ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Chemistry Survival Guide-Redox Reactions by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CEE COMED-K IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers more than 60 examples of Redox Reactions, Several Complicated examples and many more, and various incomplete dictionary kinds of collection for  Course of IIT-JEE, CET, etc with CBSE, CEE, COMED-K IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE 12 & IIT-JEE Chem Survival Guide-Redox Reactions by Prof. Subhashish

:-{D

6 ] CBSE 12 & IIT-JEE Chemistry Survival Guide – Electrochemistry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Electrochemistry ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Chemistry Survival Guide-Electrochemistry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CEE COMED-K IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers Electrochemistry, Oxidation Potential, Reduction Potential, Electrode Potential, Reactivity Series, Battery, Nernst Equation, Variation of Voltage with concentration, Electrolyte, Electrolysis, Salt Bridge, Daniel Cell, Primary Cell, Secondary Cell, Galvanic Cell, Electrolytic Cell, Conductivity, Kohlrausch’s Law and many more, and various incomplete dictionary kinds of collection for  Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE 12 & IIT-JEE Chem Survival Guide-ElectroChemistry by Prof. Subhashish

:-{D

5 ] CBSE 12 & IIT-JEE Organic Chemistry Survival Guide-Reduction Methods by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Reduction Methods ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Organic Chemistry Survival Guide-Reduction Methods by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers Various kinds of Reduction Methods in Organic Chemistry. Covers Gilmann’s Reagent, Grignard Reagent, Trimethyl Silyl Iodide, Silyl Wittig Reaction, Hydrogen with Ni, Zn, Pd Palladium, Bakers Yeast, Wolf Kishner, Wilkinson’s Catalyst, Birch Reduction, Lindlar’s Catalyst, Benkeser Reduction, Reduction with HCO2H, Sodium Boro Hydride NaBH4, Veils Meier Reaction, Luche’s Reagent, Super Hydride, Sodium Cyno boro hydride, Dibal H, Adams Catalyst, Rosen Mund Reduction, Various Lithium Aluminium Hydrides, NaNH2,  and many more, and various incomplete dictionary kinds of collection for  Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE 12 & IIT-JEE Organic Chem Survival Guide-Reduction methods by Prof. Subhashish

:-{D

4 ] CBSE 12 & IIT-JEE Organic Chemistry Survival Guide-Oxidation Methods by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Oxidation Methods ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Organic Chemistry Survival Guide-Oxidation Methods by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II COMED-K CEE IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers Various kinds of Oxidation Methods in Organic Chemistry. Covers Sarett ’s Reagent, PCC, Chromium Oxide, Osmium Oxide, Manganese Oxide, Silver oxides, Ruthenium Oxide, Hydrogen Peroxide, Selenium dioxide, KMnO4, Jones, Julia Colonna, DCC, Corey ’s, Moffats, Ley Oxidation, MPV, Fetizon, Fremy ’s Salt, Elbs Persulphate Oxidation, Sodiumperiodate, Palladium Chloride, Copper Chloride, Sharpless epoxidation, and many more, and various incomplete dictionary kinds of collection for  Course of IIT-JEE, AIEEE, CET, etc with CBSE, COMED-K CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions.Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE 12 & IIT-JEE Organic Chem Survival Guide-Oxidation methods by Prof. Subhashish

:-{D

3 ] CBSE 12 & IIT-JEE Chem Survival Guide – Bonds & Structure by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Bonds & Structures ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Chem Survival Guide-Bonds & Structures by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CEE COMED-K IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers Various kinds of Bonds and Structures in Chemistry. Covers Sigma, Pi, Delta, Back Bonding, Coordinate or Dative Bond, Eta Bond, Hydrogen Bond, London forces, and many more, and various incomplete dictionary kinds of collection for  Course of IIT-JEE, CET, etc with CBSE, CEE, COMED-K IIT-JEE ( Main and Advanced ) Problems and Solutions.Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE 12 & IIT-JEE Chem Survival Guide-Bonds & Structure by Prof. Subhashish

:-{D

2 ] CBSE 12 & IIT-JEE Chem Survival Guide – Elements & Properties by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Elements & Properties ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Chem Survival Guide-Elements & Properties by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CEE COMED-K IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers Elements & Their Properties in Chemistry. Covers the discoveries by spectral Analysis, Named after smell, places, people etc. Various compounds, tests, properties, and various incomplete dictionary kinds of collection for  Course of IIT-JEE, CET, etc with CBSE, CEE, COMED-K IIT-JEE ( Main and Advanced ) Problems and Solutions.Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE 12 & IIT-JEE Chem Survival Guide-Elements & Properties by Prof. Subhashish

:-{D

1 ] CBSE 12 & IIT-JEE Chem Survival Guide – Empirical Formulae by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Empirical Formulae ” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Chem Survival Guide-Empirical Formulae by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CEE COMED-K IGCSE IB AP-Chemistry, CET, VIT, Manipal, SRM and other exams.

This e-Book covers various kinds of Empirical Equations in Chemistry. These equations are formed by experiments, and graph plotting. In some rare cases the Theory was developed later. Covers Slater’s rule, Shielding, Finding Electronegativity values by Allred and Rochow ’s empirical formula, Moseley’s Law, Trouton’s law, Einstein-Debey equation (Dulong & Petit), Reynolds number, Raoult ’s law, Variation of viscosity with temperature, Arrhenius model, Williams-Landel-Ferry model, Masuko and Magill model, Walther formula, Wright model, Seeton model, Variation of surface tension with temperature, Eotvos equation, Guggenheim-Katayama equation, Debye-Huckel-Onsager theory of conductivity of ions in dilute solutions, Liquid drop model of Nucleus, Nuclear Shell Model, Ionic character percentage of a diatomic molecule, and various incomplete dictionary kinds of collection for  Course of IIT-JEE, CET, COMED-K etc with CBSE, CEE, IIT-JEE ( Main and Advanced ) Problems and Solutions.Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions.

CBSE 12 & IIT-JEE Chem Survival Guide-Empirical Formulae by Prof. Subhashish

:-{D

IIT-JEE, NCERT / CBSE, I.Sc., PU, Board exam, EAMCET, BITS Math Books with lots of Questions and Solutions, Examples ( Free pdf download of Math Books, Chapter wise / Topic wise Solutions )

19 ] Divisibility Test by 7, 11, 13, 17 and 19 – for IIT – JEE, I.Sc, CBSE, Board Exams –  KVPY, AMTI exams, NTSE, CBSE & IIT-JEE Math Survival Guide – by Prof. Subhashish Chattopadhyay

Description – “Divisibility Test by 7, 11, 13, 17 and 19 – Prof. Subhashish Chattopadhyay for KVPY, AMTI exams, NTSE, IIT – JEE, I.Sc, CBSE, Board Exams” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide –  Divisibility Test by 7, 11, 13, 17 and 19 for IIT – JEE, I.Sc, CBSE, Board Exams by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers  Divisibility Test by 7, 11, 13, 17 and 19 – Prof. Subhashish Chattopadhyay for KVPY, AMTI exams, NTSE, IIT – JEE, I.Sc, CBSE, Board Exams with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Application of Determinants for IIT – JEE, I.Sc, CBSE, Board Exams, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

Divisibility Test by 7, 11, 13, 17 and 19 – Prof. Subhashish Chattopadhyay

:-{D

18 ] Application of Determinants for IIT – JEE, I.Sc, CBSE, Board Exams –   CBSE & IIT-JEE Math Survival Guide – by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Application of Determinants for IIT – JEE, I.Sc, CBSE, Board Exams” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide –  Application of Determinants for IIT – JEE, I.Sc, CBSE, Board Exams by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers  Application of Determinants for IIT – JEE, I.Sc, CBSE, Board Exams with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Application of Determinants for IIT – JEE, I.Sc, CBSE, Board Exams, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

Determinants and its uses 3D Vectors Coordinate Geometry etc by Prof. Subhashish Chattopadhyay

:-{D

17 ] CBSE & IIT-JEE Math Survival Guide – Trigonometry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Trigonometry” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Trigonometry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Trigonometry with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Trigonometry, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE & IIT-JEE Math Survival Guide-Trigonometry by Prof. Subhashish

:-{D

16 ] CBSE & IIT-JEE Math Survival Guide – 3D Coordinate Geometry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding 3D Coordinate Geometry” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-3D Coordinate Geometry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers 3D Coordinate Geometry with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of 3D Coordinate Geometry, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE & IIT-JEE Math Survival Guide-3D Geometry by Prof. Subhashish

:-{D

15 ] CBSE & IIT-JEE Math Survival Guide – Hyperbola Coordinate Geometry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Hyperbola Coordinate Geometry” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Hyperbola Coordinate Geometry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Hyperbola Coordinate Geometry with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Hyperbola Coordinate Geometry, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE & IIT-JEE Math Survival Guide-Hyperbola by Prof. Subhashish

:-{D

14 ] CBSE & IIT-JEE Math Survival Guide – Ellipse Coordinate Geometry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Ellipse Coordinate Geometry” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Ellipse Coordinate Geometry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Ellipse Coordinate Geometry with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Ellipse Coordinate Geometry, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal ’s Solutions.

CBSE & IIT-JEE Math Survival Guide-Ellipse by Prof. Subhashish

:-{D

13 ] CBSE & IIT-JEE Math Survival Guide – Parabola Coordinate Geometry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Parabola Coordinate Geometry” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Parabola Coordinate Geometry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Parabola Coordinate Geometry with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Parabola Coordinate Geometry, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal ’s Solutions.

CBSE & IIT-JEE Math Survival Guide-Parabola by Prof. Subhashish

:-{D

12 ] CBSE & IIT-JEE Math Survival Guide – Pair of Straight Lines Coordinate Geometry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Pair of Straight Lines Coordinate Geometry” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Pair of Straight Lines Coordinate Geometry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Pair of Straight Lines Coordinate Geometry with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Pair of Straight Lines Coordinate Geometry, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE & IIT-JEE Math Survival Guide-Pair of Straight Lines by Prof. Subhashish

:-{D

11 ] CBSE 11 & IIT-JEE Math Survival Guide-Circles Coordinate Geometry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Circles Coordinate Geometry” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Circles Coordinate Geometry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Circles Coordinate Geometry with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Circles Coordinate Geometry, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE 11 & IIT-JEE Math Survival Guide-Circles by Prof. Subhashish

:-{D

10 ] CBSE 11 & IIT-JEE Math Survival Guide-Straight Lines Coordinate Geometry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Lines Coordinate Geometry” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Lines Coordinate Geometry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Straight Lines Coordinate Geometry with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Straight Lines Coordinate Geometry, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE 11 & IIT-JEE Math Survival Guide-Straight Lines by Prof. Subhashish

:-{D

9  ] CBSE 11 & IIT-JEE Math Survival Guide-Complex Numbers or Imaginary Numbers by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Complex Numbers or Imaginary Numbers” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Complex Numbers or Imaginary Numbers by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Complex Numbers or Imaginary Numbers with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Complex Numbers or Imaginary Numbers, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE 11 & IIT-JEE Math Survival Guide-Complex Number by Prof. Subhashish

:-{D

8 ] CBSE 12 & IIT-JEE Math Survival Guide-Quadratic Equations by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Quadratic Equations” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Quadratic Equation by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Quadratic Equations with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Quadratic Equations, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE 11 & IIT-JEE Math Survival Guide-Quadratic Equation by Prof. Subhashish

:-{D

7 ] CBSE 12 & IIT-JEE Math Survival Guide-Continuity and Differentiability by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Continuity & Differentiability” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Continuity and Differentiability by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Continuity and Differentiability with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Continuity and Differentiability, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE 12 & IIT-JEE Math Survival Guide-Continuity & Differentiability by Prof. Subhashish

:-{D

6 ] CBSE 12 & IIT-JEE Math Survival Guide-Relations and Functions by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Relations & Functions” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Relations and Functions by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Relations and Functions with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Relations and Functions, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE 12 & IIT-JEE Math Survival Guide-Relations & Functions by Prof. Subhashish

:-{D

5 ] CBSE 12 & IIT-JEE Math Survival Guide-Graphs and Functions by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Graphs & Functions” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Graphs and Functions by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Graphs and Functions with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Graphs and Functions, with CBSE, CET, CEE, COMED-K IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE 12 & IIT-JEE Math Survival Guide-Functions & Graphs by Prof. Subhashish

:-{D

4 ] CBSE 12 & IIT-JEE Math Survival Guide-Indefinite Integrals by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Indefinite Integrals & Calculus” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Indefinite Integrals by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

1

This e-Book covers Indefinite Integrals with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Indefinite Integrals, with CBSE, CEE, COMED-K IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CBSE 12 & IIT-JEE Math Survival Guide-Indefinite Integrals by Prof. Subhashish

:-{D

3 ] CBSE 12 & IIT-JEE Math Survival Guide – Area & Volume by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Area and Volume ” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 and IIT-JEE Math Survival Guide-Area and Volume by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers various kinds of graphs, such as graph of Ln x, ( ln x )/x, x Ln x, floor x [ x ] , Shifting of graphs, roots of Quadratic, cubic, and other higher powers of x ( polynomials ), asymptotes, ( How to find Asymptotes ) etc. Volume by revolution and hundreds of Area problems of IIT-JEE, CET, etc with CBSE, CEE, COMED-K IIT-JEE ( Main and Advanced ) Problems and Solutions.Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal ’s Solutions.

CBSE 12 & IIT-JEE Math Survival Guide-Area & Volume by Prof. Subhashish

:-{D

2 ] CBSE 12 & IIT-JEE Math Survival Guide-Definite Integrals by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Definite Integrals ” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Definite Integrals by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

CBSE 12 & IIT-JEE Math Survival Guide-Definite Integrals by Prof. Subhashish

This e-Book covers Definite Integrals with [ x ] greatest integer functions, { x } fraction function, Max and Min functions. Gamma function, Beta function, Integration after converting to Complex number, Leibnitz forms of Differentiating Integrals, L Hospital’s rule applied to limits with Integrals, Inequalities of Integrals, Rules / Tricks / Properties of Definite Integrals, with CBSE, CET CEE COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions.Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal ’s Solutions.

:-{D

1 ]  CBSE 12 Math Survival Guide – Differential Equations by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Differential Equations ” for IIT-JEE, I.Sc. , CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Differential Equations by Prof. Subhashish Chattopadhyay SKMClasses Bangalore Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

CBSE 12 & IIT-JEE Math Survival Guide-Differential Equations by Prof. Subhashish

This e-Book covers all kinds of Differential equations, and methods to solve them. There is a priority checklist for the approach to be taken for solving the problems. Covers ISc, CBSE. CET CEE COMED-K, IIT-JEE problems, Linear, Homogeneous, Variable separable by substitution, Exact, Reducible to exact, Bernoulli, Integrating Factors or Multiplying Factors, even Clairaut’s Differential Equations ( IIT-JEE 1999, Bihar CEE 1999 ). Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

:-{D

Various States have different names for the Engineering Entrance Exams.

CET – Common Engineering Entrance Test or Common Entrance Test is for Karnataka, Maharastra, Gujrat, Himachal Pradesh, J&K

GUJCET Exam – Gujarat Entrance Common Entrance Test – Engineering

HPCET – Himachal Pradesh Common Entrance Test

CEE – Commissionerate of Entrance Examinations Kerala. Some people say Common Entrance Exam. The exam in Kerala actually is known as KEAM – Kerala

Engineering Agriculture Medical Degree.

ASSAM CEE – Assam Combined Entrance Exam

EAMCET – Engineering and Medical Common Entrance Test

MP PET – Madhya Pradesh Pre Engineering Test. Randomly I liked lots of Physics Questions of MP-PET, as these were of very high quality / interesting.

RPET or R-PET – Rajasthan Pre Engineering Test

WBJEE or WB-JEE – West Bengal Joint Entrance Exam. The questions of these are very good / high quality.

UPSEE – Utter Pradesh State Entrance Exam

BCECEB – Bihar Combined Entrance Competitive Examination Board. The exam name is BCECE. Some call it as Bihar Combined Engineering Entrance Exam BCEEE or

BCECE (Bihar Combined Entrance Competitive Examination)

OJEE – Orissa Joint Entrance Exam

Tamilnadu does not have any state ( common ) entrance test. The admissions in colleges / universities are through standard 12 marks.

TNEA is a State Engineering Entrance Examination, which is conducted by Anna University. Tamil Nadu Engineering Admission.

COMEDK PGET – Consortium of Medical, Engineering and Dental Colleges of Karnataka for PG Post Graduate

NATA – National Aptitude Test in Architecture. National Institute of Advanced Studies in Architecture (NIASA) conducts this.

ISAT by IISAT – Indian Institute of Space Science and Technology (IISAT) Admission Test (ISAT) is a National Level Entrance Examination.

NAT – National Aptitude Test by Society for Research & Development in Education (SRDE), New Delhi

ENAT – EPSI National Admission Test. by Manipal Institute of Technology. Manipal Online Entrance Test Manipal-OET

VITEEE – VIT Engineering Entrance Exam, Vellore Institute of Technology. Conducted by VIT university

BITSAT – Birla Institute of Technology and Science Admission Test.

Punjab PET – Punjab Engineering Admission, Pre Engineering Test

ASSAM CEE – Assam Combined Entrance Exam

Tripura JEE – Tripura Joint Entrance Exam

NEE – NERIST Entrance Examination. Conducted by the North Eastern Regional Institute of Science & Technology (NERIST), Nirjuli, Itanagar, Arunachal Pradesh

1 ] CET CEE EAMCET JEE Math Survival Guide-Hyperbola Coordinate Geometry by Prof. Subhashish Chattopadhyay

Description – “Spoon Feeding Hyperbola Coordinate Geometry” for IIT-JEE, I.Sc., CBSE, Karnataka PU, State Boards etc. CBSE Standard 12 Math Survival Guide-Hyperbola Coordinate Geometry by Prof. Subhashish Chattopadhyay SKMClasses Bangalore. Useful for I.Sc. PU-II CET CEE COMED-K IGCSE IB AP-Mathematics and other exams.

This e-Book covers Hyperbola Coordinate Geometry with lots of Video explanations. The classroom teaching videos can be seen by clicking on the given links. The videos can be downloaded also. Hundreds of tricky problems solved.  Rules / Tricks / Properties of Hyperbola Coordinate Geometry, with CBSE, COMED-K, IIT-JEE ( Main and Advanced ) Problems and Solutions. Includes NCERT / CBSE Text Book Solutions, Chapter wise Solutions, AIEEE ( Now known as IIT-JEE main ) Solutions, Roorkey Entrance Exam Solutions, CET, CEE, PET, EAMCET Solutions. R D Sharma Solutions, R S Aggarwal’s Solutions.

CET CEE PET EAMCET JEE Math Survival Guide-Hyperbola by Prof. Subhashish

:-{D

https://zookeepersblog.wordpress.com/some-points-which-i-wish-all-my-new-prospective-students-know/

SKM Logo 550 X 300

Vegetarian Physics by Professor Subhashish Chattopadhyay

vegetarian-physics-by-prof-subhashish-chattopadhyay

 

Some books which are must read. I tell all my friends and students to read these

http://bioinformaticsinstitute.ru/sites/default/files/genome_the_autobiography_of_a_species_in_23_chapters_-_matt_ridley.pdf

You should read the books by Daniel Kahneman,
https://vk.com/doc23267904_175119602

 
Dan Arley.
http://www.e-reading.club/bookreader.php/138702/Ariely_-_Predictably_Irrational__The_Hidden_Forces_That_Shape_Our_Decisions.pdf

The Black Swan – by Nassim Taleb
http://shifter-magazine.com/wp-content/uploads/2015/02/Taleb_The-Black-Swan.pdf

also
see http://stavochka.com/files/Nate_Silver_The_Signal_and_the_Noise.pdf

Nudge by Thaler and Sunstein
https://ethicslab.georgetown.edu/studio/wordpress/wp-content/uploads/2015/02/Richard_H._Thaler_Cass_R._Sunstein_Nudge_Impro_BookFi.org_.pdf

book which explains pricing is ” The undercover Economist “

https%3A%2F%2Fwww.u-cursos.cl%2Fingenieria%2F2008%2F2%2FIN2C1%2F2%2Fmaterial_docente%2Fbajar%3Fid_material%3D192590&usg=AFQjCNENE73B20lg0yTs8z2nAwbeRVXqHw&bvm=bv.113370389,d.c2E

or

http://ebook.stepor.com/book/the-undercover-economist-76396-pdf.html

Looking for Partners to form Cooperative Societies.

High Level Vision Document for Potable Water by Desalination, Using Solar and Wind Energy, Electric Cars, Buses, Trucks & Other Vehicles,  Biomethane, and Biomethane Cars, Buses, Trucks & Other Vehicles, Biodegradable Bags, Green Revolution etc …

potable-water-from-wind-solar-energy-biomethane-biodiesel-etc-high-level-vision-document  

( <- Click to open the PDF and then save it )

Many more free pdf e-Books are available at (such as H C Verma Concepts of Physics Solutions)

https://skmclasses.wordpress.com/books-for-you-physics-maths-chemistry-free-download-from-skm-classes-south-bangalore/

1 ] A Guide Book to Mechanism in Organic Chemistry by Peter Sykes

A_GUIDE_BOOK_TO_MECHANISM_IN_ORGANIC_CHEMISTRY

2 ] Nomenclature of Inorganic Chemistry – IUPAC Recommendations 2005

Nomenclature of Inorganic Chemistry – IUPAC Recommendations 2005

3 ] Linear Algebra For Dummies

Linear Algebra For Dummies

4 ] Calculus Workbook For Dummies

Calculus Workbook For Dummies

5 ] Differential Equations For Dummies

Differential_Equations_For_Dummies

6 ] Linear Algebra by Jim Hefferon

Linear Algebra

7 ] Mathematics – Puzzles from around the world

Mathematics—Puzzles-from-around-the-world

8 ] Graph Theory by Reinhard Diestel

Graph Theory

9 ] Electronics for Dummies

Electronics for Dummies

10 ] Electronics Projects for Dummies

Electronics Projects For Dummies

11 ] Physics For Dummies

Physics For Dummies

12 ] Physics Workbook For Dummies

Physics Workbook For Dummies

13 ] Inorganic Chemistry Encyclopedia

https://archive.org/search.php?query=Inorganic%20Chemistry

https://archive.org/details/EncyclopediaOfInorganicChemistry

https://archive.org/search.php?query=organic%20Chemistry

14 ] Inorganic Chemistry by Cox

Inorganic Chemistry by Cox

15 ] Inorganic Chemistry 5th Edition Miessler

Inorganic Chemistry 5th Edition Miessler

16 ] Fundamentals of Organic Chemistry Solomon

Fundamentals of Organic Chemistry Solomon

17 ] Illustrated Guide to Home Chemistry Experiments

Illustrated Guide to Home Chemistry Experiments

18 ] L. A. Sena A Collection Of Questions And Problems In Physics Mir Publishers ( 1988) by L . A. Sena for IIT JEE CET AIEEE NEET Subhashish Sir’s SKM Classes PDF download free pdf

https://archive.org/details/L.A.SenaACollectionOfQuestionsAndProblemsInPhysicsMirPublishers1988

http://93.174.95.27/ads.php?md5=9CFA13564D157FDD468C8CF3C635D788

19 ] Krotov Problems In Physics S.S. Krotov for IIT JEE CET AIEEE NEET Subhashish Sir’s SKM Classes PDF download free pdf

https://archive.org/details/ProblemsInPhysicsSSKrotov

20 ] Pinsky Problems In Physics by A. A. Pinsky for IIT JEE CET AIEEE NEET Subhashish Sir’s SKM Classes PDF download free pdf 

https://archive.org/details/pinsky-problems-in-physics

:-{D

 

e-Book-e-Book-e-Book-e-Book-e-Book-e-Book-e-Book-e-Book-e-Book-e-Book–e-Book

If you want to sell your House, why do you have to pay 2% to a Broker or to a website ?

You can advertise for free to sell your House at free4u.info

Professor Subhashish Chattopadhyay is providing a Social Service for all in Bangalore, to advertise for Free

If you want to sell your Car, why do you have to pay 2% to a Broker or to a website ?

You can advertise for free to sell your Car at free4u.info

Professor Subhashish Chattopadhyay is providing a Social Service for all in Bangalore, to advertise for Free

If you are looking for Organ Donation, where do you ask ? Where do you want to put up your requirements ? Do you give costly ads ?

You can advertise or Post Classifieds for free at free4u.info

Professor Subhashish Chattopadhyay is providing a Social Service for all in Bangalore, to advertise for Free. Post all kinds of Classified ads and Requirements for FREE.

If you are a Tutor, or a Shopkeeper, or a Teacher, or a Cook, or a Gardener, or a Dog Trainer ….. or something something something….. How can you afford costly ads ? Post your requirements for free at free4u.info     Advertise yourself free at free4u.info     Doing a garage sell …. Tell all for free at free4u.info

Looking for a Nanny ? You can get Nannys in free4u.info

Nannys looking for jobs ? Want children to take care ? You get the child and Parents in free4u.info

Professor Subhashish Chattopadhyay is providing a Social Service for all in Bangalore, to advertise for Free. Post all kinds of Classified ads and Requirements for FREE. Following Categories and Subcategories will surely help you. This is not an exhaustive list. You can give general requirements as well. Post all your skills. Post all your needs. Looking for a job ? You can post your profile as well.

Some call this as ” Yellow Pages “. free4u.info

Some call this a FREE listing sites free4u.info

free4u.info Bike 17 free4u.info Bike 20

free4u.info Bike 9 free4u.info Bike 14

free4u.info Bike 7 free4u.info Bike 15

free4u.info Bike 16 free4u.info Bike 18

Bike        ( Want to sell your Bike ? Want a Buyer ? Advertise for free at free4u.info )

Books

Physical Chemistry

1 ) Physical Chemistry in Brief by Prof. Ing. Anatol Malijevsk´y for IIT JEE Standard 11 – 12 CBSE ISc

https://onedrive.live.com/redir?resid=2B92F809BA617279!127&authkey=!AD5bjH_tNghTUmc&ithint=file%2cpdf

General Chemistry

1 ) The Basics of General, Organic and Biological Chemistry for IIT JEE Standard 11 – 12 CBSE

https://onedrive.live.com/redir?resid=2B92F809BA617279!128&authkey=!APxe3jx3n0sXA-Y&ithint=file%2cpdf

:-)

2 ) General Chemistry Principles, Patterns and Applications for IIT JEE Standard 11 – 12 CBSE

https://onedrive.live.com/redir?resid=2B92F809BA617279!129&authkey=!AHRN_tCwVTQI7Qs&ithint=file%2cpdf

:-)
search for videos in http://www.skmclasses.kinja.com
you will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.

https://skmclasses.wordpress.com/accolades-and-appreciations-received-from-students-and-parents/

3 ) The Golden Book of Chemistry Experiments

https://onedrive.live.com/redir?resid=2B92F809BA617279!141&authkey=!AAm7njVkiJYADx4&ithint=file%2cpdf

:-)

Organic Chemistry

1 ) Introduction to Organic Chemistry by William Brown, Thomas Poon for IIT JEE Standard 11 – 12 CBSE

https://onedrive.live.com/redir?resid=2B92F809BA617279!130&authkey=!AAYnaEs33stgacM&ithint=file%2cpdf

https://zookeepersblog.wordpress.com/iit-jee-3d-geometry-solutions/

:-)

2 ) Organic Chemistry By Robert Hoffman for IIT JEE Standard 11 – 12 CBSE

org-chem-hoffman-2

:-)

https://skmclasses.wordpress.com/differential-equation-for-iit-jee-cbse-from-skm-classes-south-bangalore/

3 ) Art of Problem Solving in Organic Chemistry, The, Second Edition – Alonso-Amelot, Miguel for IIT JEE Standard 11 – 12 CBSE

https://zookeepersblog.wordpress.com/iit-jee-algebra/

https://onedrive.live.com/redir?resid=2B92F809BA617279!138&authkey=!AMlVb0DFPmYJOEQ&ithint=file%2cpdf

:-)

4 ) Wade Organic Chemistry

https://onedrive.live.com/redir?resid=2B92F809BA617279!140&authkey=!AEx0scl1DhJMTgM&ithint=file%2cpdf

:-)

Wade Organic Chemistry Solutions

https://onedrive.live.com/redir?resid=2B92F809BA617279!139&authkey=!AJYboYtZ8QLvAR8&ithint=file%2cpdf

:-)

https://skmclasses.wordpress.com/differentiation-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Inorganic Chemistry

1 ) Inorganic Chemistry by James E. House for IIT JEE Standard 11 – 12 CBSE

https://zookeepersblog.wordpress.com/iit-jee-optics/

https://onedrive.live.com/redir?resid=2B92F809BA617279!131&authkey=!AMhnm5CvB8z7KSM&ithint=file%2cpdf

https://skmclasses.wordpress.com/binomial-theorem-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

https://zookeepersblog.wordpress.com/iit-jee-calculus/

https://skmclasses.wordpress.com/center-of-mass-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

2 ) Inorganic Chemistry Miessler for IIT JEE Standard 11 – 12 CBSE

https://onedrive.live.com/redir?resid=2B92F809BA617279!136&authkey=!AKWVPi3dF7Yc0lY&ithint=file%2cpdf

https://zookeepersblog.wordpress.com/iit-jee-complex-number/

https://skmclasses.wordpress.com/complex-number-for-iit-jee-cbse-from-skm-classes-south-bangalore/

https://zookeepersblog.wordpress.com/iit-jee-determinant-and-matrices/

https://skmclasses.wordpress.com/circular-motion-problems-for-iit-jee-cbse-from-skm-classes/

https://zookeepersblog.wordpress.com/iit-jee-electromagnetics/

https://skmclasses.wordpress.com/combinatorics-permutation-combination-for-iit-jee-cbse/

xxxxxxxxxxxxxxxxxxxxxx

Physics Books & Solutions

Prof. H C Verma Concepts of Physics Part 1 Solutions

Chapter 1 Solutions to Basic Concepts Introduction to Physics Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!142&authkey=!AJr-WDGc2ZqP4y8&ithint=file%2cpdf

https://skmclasses.wordpress.com/circular-motion-problems-for-iit-jee-cbse-from-skm-classes/

Chapter 2 Physics and Mathematics Vectors Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!143&authkey=!AJUz8RCe3WsCI3s&ithint=file%2cpdf

https://skmclasses.wordpress.com/electromagnetic-induction-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 3 Rest and Motion Kinematics Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!146&authkey=!ALSq-Own29RH6mg&ithint=file%2cpdf

https://skmclasses.wordpress.com/complex-number-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 4 The Forces Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!145&authkey=!ABjAoQ0FA-uY5uQ&ithint=file%2cpdf

https://skmclasses.wordpress.com/complex-number-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 5 Newton’s Laws of Motion Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!147&authkey=!ACRHSj2u2bbi-OI&ithint=file%2cpdf

https://skmclasses.wordpress.com/center-of-mass-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 6 Friction Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!148&authkey=!ANMz41RbxQXVM20&ithint=file%2cpdf

https://skmclasses.wordpress.com/differential-equation-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 7 Circular Motion Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!149&authkey=!AF6-2o5MlBZJf40&ithint=file%2cpdf

https://skmclasses.wordpress.com/binomial-theorem-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 8 Work and Energy Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!153&authkey=!AEQMmG-ld94zFFE&ithint=file%2cpdf

https://skmclasses.wordpress.com/cbse-standard-12-chemistry-polymers-chapter-15-ncert/

Chapter 9 Center of Mass, Linear Momentum, Collision Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!150&authkey=!AIcASU-Cp4T6eQE&ithint=file%2cpdf

https://skmclasses.wordpress.com/differentiation-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 10 Rotational Mechanics Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!151&authkey=!ALV4MIEmISx_ldc&ithint=file%2cpdf

https://skmclasses.wordpress.com/cbse-standard-11-chemistry-chapter-1-some-basic-concepts-of-chemistry-ncert/

Chapter 11 Gravitation Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!152&authkey=!ALT9D-uph04bMEg&ithint=file%2cpdf

https://skmclasses.wordpress.com/differential-equation-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 12 Simple Harmonic Motion Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!157&authkey=!ALQxDCUxYOwSBQg&ithint=file%2cpdf

https://skmclasses.wordpress.com/home-tuition-for-iit-jee-at-koromangala-hsr-layout-lt-south-city-brigade-south-bangalore/

Chapter 13 Fluid Mechanics Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!154&authkey=!AMVxtUyLQZmKZJw&ithint=file%2cpdf

https://skmclasses.wordpress.com/books-for-you-physics-maths-chemistry-free-download-from-skm-classes-south-bangalore/

Chapter 14 Some Mechanical Properties of Matter Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!155&authkey=!AIuMBepU2AxsFRE&ithint=file%2cpdf

https://skmclasses.wordpress.com/accolades-and-appreciations-received-from-students-and-parents/

Chapter 15 Wave Motion and Waves on a String Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!156&authkey=!AOA-830PFYrmk8w&ithint=file%2cpdf

search for videos in http://www.skmclasses.kinja.com
you will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.

Chapter 16 Sound Waves Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!159&authkey=!APnaynx0aptGCwE&ithint=file%2cpdf

https://skmclasses.wordpress.com/combinatorics-permutation-combination-for-iit-jee-cbse/

Chapter 17 Light Waves Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!158&authkey=!AM66-M2Yx_UXX0s&ithint=file%2cpdf

https://skmclasses.wordpress.com/circular-motion-problems-for-iit-jee-cbse-from-skm-classes/

Chapter 18 Geometrical Optics Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!164&authkey=!AHiCw-8XLc4ZTeE&ithint=file%2cpdf

https://skmclasses.wordpress.com/electromagnetic-induction-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 19 Optical Instruments Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!160&authkey=!AGFubhgboP1EdHY&ithint=file%2cpdf

https://skmclasses.wordpress.com/complex-number-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 20 Dispersion and Spectra Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!161&authkey=!AGMd8Va_aT46q9U&ithint=file%2cpdf

https://skmclasses.wordpress.com/complex-number-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 21 Speed of Light Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!162&authkey=!AKRvIq_gLa4gsVQ&ithint=file%2cpdf

https://skmclasses.wordpress.com/center-of-mass-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 22 Photometry Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!163&authkey=!AC2AJWeKPy2S8wQ&ithint=file%2cpdf

:-)

https://skmclasses.wordpress.com/differential-equation-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Prof. H C Verma Concepts of Physics Part 2 Solutions

Chapter 23 Heat and Temperature Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!165&authkey=!ADz7Ca3PtNrImcY&ithint=file%2cpdf

https://skmclasses.wordpress.com/binomial-theorem-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 24 Kinetic Theory of Gases Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!167&authkey=!AHllEX_cahNBUnQ&ithint=file%2cpdf

https://skmclasses.wordpress.com/cbse-standard-12-chemistry-polymers-chapter-15-ncert/

Chapter 25 Calorimetry Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!166&authkey=!ALUbGfqQ–0vpfw&ithint=file%2cpdf

https://skmclasses.wordpress.com/differentiation-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 26 Laws of Thermodynamics Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!168&authkey=!ADFDQpD4SxGeiQs&ithint=file%2cpdf

https://skmclasses.wordpress.com/cbse-standard-11-chemistry-chapter-1-some-basic-concepts-of-chemistry-ncert/

Chapter 27 Specific Heat Capacities of Gases Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!169&authkey=!AFgvvQPH0OH_qKM&ithint=file%2cpdf

https://skmclasses.wordpress.com/differential-equation-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 28 Heat Transfer Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!172&authkey=!AI8_CkYtiK3Udg0&ithint=file%2cpdf

https://skmclasses.wordpress.com/home-tuition-for-iit-jee-at-koromangala-hsr-layout-lt-south-city-brigade-south-bangalore/

Chapter 29 Electric Field and Potential Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!170&authkey=!ACjYnzLCLJrByA0&ithint=file%2cpdf

https://skmclasses.wordpress.com/books-for-you-physics-maths-chemistry-free-download-from-skm-classes-south-bangalore/

Chapter 30 Gauss’s Law Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!171&authkey=!AB3HJm7pdtefdR0&ithint=file%2cpdf

https://skmclasses.wordpress.com/accolades-and-appreciations-received-from-students-and-parents/

Chapter 31 Capacitors Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!174&authkey=!AMKQzcoPPh0VX0g&ithint=file%2cpdf

search for videos in http://www.skmclasses.kinja.com
you will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.

Chapter 32 Electric Current in Conductors Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!175&authkey=!AFElmEfB1ENf3Rk&ithint=file%2cpdf

https://skmclasses.wordpress.com/combinatorics-permutation-combination-for-iit-jee-cbse/

Chapter 33 Thermal and Chemical Effects of Electric Current Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!173&authkey=!ALSARNyRKd1PP60&ithint=file%2cpdf

:-)

https://skmclasses.wordpress.com/circular-motion-problems-for-iit-jee-cbse-from-skm-classes/

Chapter 34 Magnetic Field Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!176&authkey=!AOaQG7m2REDyYEs&ithint=file%2cpdf

https://skmclasses.wordpress.com/electromagnetic-induction-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 35 Magnetic Field due to a Current Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!177&authkey=!ABFJW3LZ9AShz7M&ithint=file%2cpdf

https://skmclasses.wordpress.com/complex-number-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 36 Permanent Magnets Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!178&authkey=!AB8RBTZhquBcfvo&ithint=file%2cpdf

https://skmclasses.wordpress.com/complex-number-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 37 Magnetic Properties of Matter Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!179&authkey=!AGNP05GRY6rPaPE&ithint=file%2cpdf

https://skmclasses.wordpress.com/center-of-mass-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 38 Electromagnetic Induction Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!183&authkey=!ABOJGazgiYkV-PU&ithint=file%2cpdf

https://skmclasses.wordpress.com/differential-equation-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 39 Alternating Current Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!180&authkey=!ABMa1mk_0r5On1Y&ithint=file%2cpdf

https://skmclasses.wordpress.com/binomial-theorem-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 40 Electromagnetic Waves Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!181&authkey=!AF17YFaiUhTym20&ithint=file%2cpdf

https://skmclasses.wordpress.com/cbse-standard-12-chemistry-polymers-chapter-15-ncert/

Chapter 41 Electric Current through Gases Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!182&authkey=!AGnofTnP9W7Dfd0&ithint=file%2cpdf

https://skmclasses.wordpress.com/differentiation-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 42 Photo Electric Effect and Wave Particle Duality Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!184&authkey=!AE_ozS0v9djYNUg&ithint=file%2cpdf

https://skmclasses.wordpress.com/cbse-standard-11-chemistry-chapter-1-some-basic-concepts-of-chemistry-ncert/

Chapter 43 Bohr’s Model and Physics of the Atom Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!186&authkey=!AEJvJJP2QcsYlaY&ithint=file%2cpdf

https://skmclasses.wordpress.com/differential-equation-for-iit-jee-cbse-from-skm-classes-south-bangalore/

Chapter 44 X Rays Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!185&authkey=!AIcyLjsZeu1B0DA&ithint=file%2cpdf

https://skmclasses.wordpress.com/home-tuition-for-iit-jee-at-koromangala-hsr-layout-lt-south-city-brigade-south-bangalore/

Chapter 45 Semiconductors and Semi Conductor Devices Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!187&authkey=!AIMGnyc0qk7fMng&ithint=file%2cpdf

https://skmclasses.wordpress.com/books-for-you-physics-maths-chemistry-free-download-from-skm-classes-south-bangalore/

Chapter 46 The Nucleus Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!188&authkey=!AOlAD4a9Q5DcUzs&ithint=file%2cpdf

search for videos in http://www.skmclasses.kinja.com
you will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.

Chapter 47 Special Theory of Relativity Concepts of Physics By Prof. H C Verma

https://onedrive.live.com/redir?resid=2B92F809BA617279!144&authkey=!APAD9EJ–skSUbs&ithint=file%2cpdf

https://skmclasses.wordpress.com/accolades-and-appreciations-received-from-students-and-parents/

Concepts of Physics By Prof. H C Verma Solutions are above

_____________________________________________________

Physics Books

1 ) A Guide to Physics Problems Part 1 – Mechanics, Relativity, and Electrodynamics – Cahn S., Nadgorny B

https://onedrive.live.com/redir?resid=2B92F809BA617279!194&authkey=!AKeUoSKoK-AAEaA&ithint=file%2cpdf

:-)

2 ) A Guide to Physics Problems. Part 2. Thermodynamics, Statistical Physics, and Quantum Mechanics -S.Cahn, B.Nadgorny

https://onedrive.live.com/redir?resid=2B92F809BA617279!193&authkey=!AF9_vRvuwzMWfY4&ithint=file%2cpdf

:-)

3 ) Essential Physics by Frank Firk

https://onedrive.live.com/redir?resid=2B92F809BA617279!198&authkey=!AEtKSfPh9QiHilA&ithint=file%2cpdf

:-)

Solutions to Chapter 8 :

Must see https://zookeepersblog.wordpress.com/some-points-which-i-wish-all-my-new-prospective-students-know/

Chemistry Problem Solving jobs by Ph.D Postdoc students at skmclasses C

🙂

4 Electron configuration of Scandium till Zinc

🙂

Another way of writing the electron configuration

31a d block elements electron configuration

🙂

Oxidation States of d-Block elements

1 Transition Metal Oxidation States

Another way of representing oxidation states of d-Block elements

1a Oxidation states of d-Block elements 3d period

🙂

2 Electronegativity highlighted with colour contrast

🙂

Zinc and its compounds

51a Zinc and its compounds

🙂

1 Periodic table showing ionization energies in colour contrast

🙂

xxxxxxxxxxxxxxxxxxxxxxxxxx

The next chapter Solution is at https://zookeepersblog.wordpress.com/ncert-cbse-standard-12-co-ordination-compounds-chapter-9-inorganic-chemistry/
!
The previous chapter Solution is at https://zookeepersblog.wordpress.com/ncert-cbse-standard-12-p-block-elements-chapter-7-inorganic-chemistry/
!
The first Chapter Solution is at https://zookeepersblog.wordpress.com/ncert-cbse-standard-12-solid-state-chapter-1-physical-chemistry/
🙂
xxxxxxxxxxxxxxxxxxxxxxxxxx

Untitled

🙂

1 Periodic trend in Electrode potential-4

1 Exceptional configurations of Chromium and copper

2 Exceptional configurations of Chromium and copper

3 Exceptional configurations of Chromium and copper

4 Exceptional configurations of Chromium and copper

5 Exceptional configurations of Chromium and copper

🙂

5 smile melting face

🙂

Cohesive Energy

7a If the cohesive energy is more

🙂

4a Isomorphism atoms combined in similar manner 5a Atomic Imperfection stoichiometric defects 5b Atomic Imperfection non stoichiometric defects

🙂

4 bent face

🙂

12a A student obtained the values of crystals cohesive energies

🙂

8a Melting point of Ionic crystal is

🙂

9a A radar is sending out pulse of 1 micro second 9b A radar is sending out pulse of 1 micro second

🙂

10a In an Ionic Crystal the energy required

🙂

11a the binding for solids with high cohesive energy

🙂

4 distorted face

🙂

The electrode potential shows stability of ions

32a Which ion is unstable

🙂

4 face through glass

🙂

Tin dissolves in hot concentrated NaOH

50a Tin dissolves in hot conc NaOH

🙂

4 fossil spiral

🙂

Metallic bond

33a Metallic bond

🙂

4 Girl with Woman

🙂

Nitriding

49a Nitriding process of heating stell at 700 deg in NH3

🙂

4 LUCY-close-up

🙂

34a Transition Elements used in catalysts 34b Transition Elements used in catalysts 34c Transition Elements used in catalysts

34d Transition Elements used in catalysts

🙂

4 neanderthal

🙂

4 Painting

🙂

4 Woman carrying hey

🙂

35a CuSO4 absorbs red colour

🙂

4 yellow leaf

🙂

48a structures of chromate ions

🙂

5 angry face distorted

🙂

36a Crystal field splitting

🙂

5 bent face

🙂

47a Chromyl chloride test

🙂

5 distorted face

🙂

37a The colour of transition metal ions reason

🙂

5 early human

🙂

46a Potassium dichromate preparation 46b Potassium dichromate preparation 46c Potassium dichromate preparation

46d Potassium dichromate preparation

🙂

5 fossil poka

🙂

Spinel

40a Spinel

🙂

38a Colour of metal ions d block 38b Colour of metal ions d block

38c Colour of metal ions d block

39a Alloys 39b Alloys

🙂

5 giant fossil

🙂

45a Bordeaux mixture used as fungicide

🙂

5 girl with ducks

🙂

41a inert metals soluble in aqua regia

🙂

laba.ws_Albert_Bierstadt

🙂

44a hydrargyrum water silver

🙂

xxxxxxxxxxxxxxxxxxxxxxxxxx

The next chapter Solution is at https://zookeepersblog.wordpress.com/ncert-cbse-standard-12-co-ordination-compounds-chapter-9-inorganic-chemistry/
!
The previous chapter Solution is at https://zookeepersblog.wordpress.com/ncert-cbse-standard-12-p-block-elements-chapter-7-inorganic-chemistry/
!
The first Chapter Solution is at https://zookeepersblog.wordpress.com/ncert-cbse-standard-12-solid-state-chapter-1-physical-chemistry/
🙂
xxxxxxxxxxxxxxxxxxxxxxxxxx

43a Cu2+ is more stable in hydrated form

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Iron, copper, silver and gold are among the transition elements that have played important roles in the development of human civilisation. The inner transition elements such as Th, Pa and U are proving excellent sources of nuclear energy in modern times.

The d-block of the periodic table contains the elements of the groups 3-12 in which the d orbitals are progressively filled in each of the four long periods. The elements constituting the f -block are those in which the 4 f and 5 f orbitals are progressively filled in the latter two long periods; these elements are formal members of group 3 from which they have been taken out to form a separate f-block of the periodic table. The names transition metals and inner transition metals are often used to refer to the elements of d-and f-blocks respectively.

🙂

42a occlusion absorbtion of hydrogen

🙂

There are mainly three series of the transition metals, 3d series (Sc to Zn), 4d series (Y to Cd) and 5d series (La to Hg, omitting Ce to Lu). The fourth 6d series which begins with Ac is still incomplete. The two series of the inner transition metals, (4f and 5f) are known as lanthanoids and actinoids respectively.

Strictly speaking, a transition element is defined as the one which has incompletely filled d orbitals in its ground state or in any one of its oxidation states. Zinc, cadmium and mercury of group 12 have full d10 configuration in their ground state as well as in their common oxidation states and hence, are not regarded as transition metals. However, being the end members of the three transition series, their chemistry is studied along with the chemistry of the transition metals.
The presence of partly filled d or f orbitals in their atoms sets the study of the transition elements and their compounds apart from that of the main group elements. However, the usual theory of valence as applicable to the main group elements can also be applied successfully to the transition elements.

Various precious metals such as silver, gold and platinum and industrially important metals like iron, copper and titanium form part of the transition metals.

In this Unit, besides introduction, we shall first deal with the electronic configuration, occurrence and general characteristics of the transition elements with special emphasis on the trends in the properties of the first row (3d) transition metals and the preparation and properties of some important compounds. This will be followed by consideration of certain general aspects such as electronic configurations, oxidation states and chemical reactivity of the inner transition metals.

THE TRANSITION ELEMENTS (d-BLOCK)

8.1 Position in the Periodic Table

The d–block occupies the large middle section flanked by s– and p– blocks in the periodic table. The very name ‘transition’ given to the elements of d-block is only because of their position between s– and p– block elements. The d–orbitals of the penultimate energy level in their atoms receive electrons giving rise to the three rows of the transition metals, i.e., 3d, 4d and 5d. The fourth row of 6d is still incomplete. These series of the transition elements are shown in Table 8.1.

8.2 Electronic Configurations of the d-Block Elements

In general the electronic configuration of these elements is (n-1)d1–10ns1–2 . The (n–1) stands for the inner d orbitals which may have one to ten electrons and the outermost ns orbital may have one or two electrons. However, this generalisation has several exceptions because of very little energy difference between (n-1)d and ns orbitals. Furthermore, half and completely filled sets of orbitals are relatively more stable. A consequence of this factor is reflected in the electronic configurations of Cr and Cu in the 3d series. Consider the case of Cr, for example, which has 3d54s1 instead of 3d44s2 ; the energy gap between the two sets (3d and 4s) of orbitals is small enough to prevent electron entering the 3d orbitals. Similarly in case of Cu, the configuration is 3d104s1 and not 3d94s2 . The outer electronic configurations of the transition elements are given in Table 8.1.

Table 8.1: Outer Electronic Configurations of the Transition Elements (ground state)
1st Series
Sc Ti V Cr Mn Fe Co Ni Cu Zn
Z 21 22 23 24 25 21 22 23 24 25
4s 2 2 2 1 2 2 2 2 1 2
3d 1 2 3 5 5 6 7 8 10 10
2nd Series
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
Z 39 40 41 42 43 44 45 46 47 48
5s 2 2 1 1 1 1 1 0 1 2
3d 1 2 4 5 6 7 8 10 10 10
3rd Series
La Hf Ta W Re Os Ir Pt Au Hg
Z 57 72 73 74 75 76 77 78 79 80
6s 2 2 2 2 2 2 2 1 1 2
5d 1 2 3 4 5 6 7 9 10 10
4th Series
Ac Rf Db Sg Bh Hs Mt Ds Rg Uub
Z 89 104 105 106 107 108 109 110 111 112
7s 2 2 2 2 2 2 2 2 1 2
6d 1 2 3 4 5 6 7 8 10 10

The electronic configurations of Zn, Cd and Hg are represented by the general formula (n-1)d10 ns2. The orbitals in these elements are completely filled in the ground state as well as in their common oxidation states. Therefore, they are not regarded as transition elements.

The d orbitals of the transition elements project to the periphery of an atom more than the other orbitals (i.e., s and p), hence, they are more influenced by the surroundings as well as affecting the atoms or molecules surrounding them. In some respects, ions of a given dn configuration (n = 1 – 9) have similar magnetic and electronic properties. With partly filled d orbitals these elements exhibit certain characteristic properties such as display of a variety of oxidation states, formation of coloured ions and entering into complex formation with a variety of ligands.

The transition metals and their compounds also exhibit catalytic property and paramagnetic behaviour. All these characteristics have been discussed in detail later in this Unit.

There are greater horizontal similarities in the properties of the transition elements in contrast to the main group elements. However, some group similarities also exist. We shall first study the general characteristics and their trends in the horizontal rows (particularly 3d row) and then consider some group similarities.

Example 8.1
On what ground can you say that scandium (Z = 21) is a transition element but zinc (Z = 30) is not?
Solution
On the basis of incompletely filled 3d orbitals in case of scandium atom in its ground state (3d1 ), it is regarded as a transition element. On the other hand, zinc atom has completely filled d orbitals (3d10 ) in its ground state as well as in its oxidised state, hence it is not regarded as a transition element.

Intext Question
8.1 Silver atom has completely filled d orbitals (4d10) in its ground state. How can you say that it is a transition element?

8.3 General Properties of the Transition Elements (d-Block)

8.3.1 Physical Properties

Nearly all the transition elements display typical metallic properties such as high tensile strength, ductility malleability, high thermal and electrical conductivity and metallic lustre. With the exceptions of Zn, Cd, Hg and Mn, they have one or more typical metallic structures at normal temperatures.

Lattice Structures of Transition Metals
Sc Ti V Cr Mn Fe Co Ni Cu Zn
hcp
(bcc)
hcp
(bcc)
bcc bcc
(bcc,ccp)
X
(hcp)
bcc
(hcp)
ccp ccp ccp X
(hcp)
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
hcp
(bcc)
hcp(bcc) bcc bcc hcp hcp ccp ccp ccp X
(hcp)
La Hf Ta W Re Os Ir Pt Au Hg
hcp(ccp,bcc) hcp(bcc) bcc bcc hcp hcp ccp ccp ccp X

The transition metals (with the exception of Zn, Cd and Hg) are very much hard and have low volatility. Their melting and boiling points are high. Fig. 8.1 depicts the melting points of the 3d, 4d and 5d transition metals. The high melting points of these metals are attributed to the involvement of greater number of electrons from (n-1)d in addition to the ns electrons in the interatomic metallic bonding. In any row the melting points of these metals rise to a maximum at d5 except for anomalous values of Mn and Tc and fall regularly as the atomic number increases. They have high enthalpies of atomisation which are shown in Fig. 8.2. The maxima at about the middle of each series indicate that one unpaired electron per d orbital is particularly favourable for strong interatomic interaction. In general, greater the number of valence electrons, stronger is the resultant bonding. Since the enthalpy of atomisation is an important factor in determining the standard electrode potential of a metal, metals with very high enthalpy of atomisation (i.e., very high boiling point) tend to be noble in their reactions (see later for electrode potentials).

🙂

31a Fig 8.1 trends in melting points

🙂

Another generalisation that may be drawn from Fig. 8.2 is that the metals of the second and third series have greater enthalpies of atomisation than the corresponding elements of the first series; this is an important factor in accounting for the occurrence of much more frequent metal – metal bonding in compounds of the heavy transition metals.

🙂

32a Fig 8.2 trends in enthalpies

🙂

8.3.2 Variation in Atomic and Ionic Sizes of Transition Metals

In general, ions of the same charge in a given series show progressive decrease in radius with increasing atomic number. This is because the new electron enters a d orbital each time the nuclear charge increases by unity. It may be recalled that the shielding effect of a d electron is not that effective, hence the net electrostatic attraction between the nuclear charge and the outermost electron increases and the ionic radius decreases. The same trend is observed in the atomic radii of a given series. However, the variation within a series is quite small. An interesting point emerges when atomic sizes of one series are compared with those of the corresponding elements in the other series. The curves in Fig. 8.3 show an increase from the first (3d) to the second (4d) series of the elements but the radii of the third (5d) series are virtually the same as those of the corresponding members of the second series. This phenomenon is associated with the intervention of the 4f orbitals which must be filled before the 5d series of elements begin. The filling of 4f before 5d orbital results in a regular decrease in atomic radii called Lanthanoid contraction which essentially compensates for the expected increase in atomic size with increasing atomic number. The net result of the lanthanoid contraction is that the second and the third d series exhibit similar radii (e.g., Zr 160 pm, Hf 159 pm) and have very similar physical and chemical properties much more than that expected on the basis of usual family relationship.

The factor responsible for the lanthanoid contraction is somewhat similar to that observed in an ordinary transition series and is attributed to similar cause, i.e., the imperfect shielding of one electron by another in the same set of orbitals. However, the shielding of one 4f electron by another is less than that of one d electron by another, and as the nuclear charge increases along the series, there is fairly regular decrease in the size of the entire 4fn orbitals.

🙂

33a Fig 8.3 Trends in atomic radii

🙂

The decrease in metallic radius coupled with increase in atomic mass results in a general increase in the density of these elements. Thus, from titanium (Z = 22) to copper (Z = 29) the significant increase in the density may be noted elements (Table 8.2).

Table 8.2: Electronic Configurations and some other Properties of the First Series of Transition Elements
Element Sc Ti V Cr Mn Fe Co Ni Cu Zn
Atomic number 21 22 23 24 25 26 27 28 29 30
Electronic configuration
M 3d14s2 3d24s2 3d34s2 3d54s1 3d54s2 3d64s2 3d74s2 3d84s2 3d104s1 3d104s2
M+ 3d14s1 3d24s1 3d34s1 3d5 3d54s1 3d64s1 3d74s1 3d84s1 3d10 3d104s1
M2+ 3d1 3d2 3d3 3d4 3d5 3d6 3d7 3d8 3d9 3d10
M3+ [Ar] 3d1 3d2 3d3 3d4 3d5 3d6 3d7 3d 3d
Enthalpy of atomisation, ΔaHΘ/kJ mol-1
326 473 515 397 281 416 425 430 339 126
Ionisation enthalpy/ ΔiHΘ/kJ mol-1
Metallic/ionic M 164 147 135 129 137 126 125 125 128 137
radii/pm M2+ 79 82 82 77 74 70 73 75
M3+ 73 67 64 62 65 65 61 60
Standard electrode M2+/M -1.63 -1.18 -0.90 -1.18 -0.44 -0.28 -0.25 +0.34 -0.76
potential Eθ/V M3+/M2+ -0.37 -0.26 -0.41 +1.57 +0.77 +1.97
Density/g cm-3 3.43 4.1 6.07 7.19 7.21 7.8 8.7 8.9 8.9 7.1

Example 8.2
Why do the transition elements exhibit higher enthalpies of atomisation?
Solution
Because of large number of unpaired electrons in their atoms they have stronger interatomic interaction and hence stronger bonding between atoms resulting in higher enthalpies of atomisation.

8.3.3 Ionisation Enthalpies

Due to an increase in nuclear charge which accompanies the filling of the inner d orbitals, there is an increase in ionisation enthalpy along each series of the transition elements from left to right. However, many small variations occur. Table 8.2 gives the values for the first three ionisation enthalpies of the first row elements. These values show that the successive enthalpies of these elements do not increase as steeply as in the main group elements. Although the first ionisation enthalpy, in general, increases, the magnitude of the increase in the second and third ionisation enthalpies for the successive elements, in general, is much higher.

The irregular trend in the first ionisation enthalpy of the 3d metals, though of little chemical significance, can be accounted for by considering that the removal of one electron alters the relative energies of 4s and 3d orbitals. So the unipositive ions have dn configurations with no 4s electrons. There is thus, a reorganisation energy accompanying ionisation with some gains in exchange energy as the number of electrons increases and from the transference of s electrons into d orbitals. There is the generally expected increasing trend in the values as the effective nuclear charge increases. However, the value of Cr is lower because of the absence of any change in the d configuration and the value for Zn higher because it represents an ionisation from the 4s level. The lowest common oxidation state of these metals is +2. To form the M2+ ions from the gaseous atoms, the sum of the first and second ionisation energies is required in addition to the enthalpy of atomisation for each element. The dominant term is the second ionisation enthalpy which shows unusually high values for Cr and Cu where the d5 and d10 configurations of the M+ ions are disrupted, with considerable loss of exchange energy. The value for Zn is correspondingly low as the ionisation consists of the removal of an electron which allows the production of the stable d10 configuration. The trend in the third ionisation enthalpies is not complicated by the 4s orbital factor and shows the greater difficulty of removing an electron from the d5 (Mn2+ ) and d10 (Zn2+ ) ions superimposed upon the general increasing trend. In general, the third ionisation enthalpies are quite high and there is a marked break between the values for Mn2+ and Fe2+ . Also the high values for copper, nickel and zinc indicate why it is difficult to obtain oxidation state greater than two for these elements.

Although ionisation enthalpies give some guidance concerning the relative stabilities of oxidation states, this problem is very complex and not amendable to ready generalisation.

8.3.4 Oxidation States

One of the notable features of a transition element is the great variety of oxidation states it may show in its compounds. Table 8.3 lists the common oxidation states of the first row transition elements.

Table 8.3: Oxidation States of the first row Transition Metals (the most common ones are in bold types)
Sc Ti V Cr Mn Fe Co Ni Cu Zn
+2 +2 +2 +2 +2 +2 +2 +1 +2
+3 +3 +3 +3 +3 +3 +3 +3 +2
+4 +4 +4 +4 +4 +4 +4
+5 +5 +5
+6 +6 +6
+7

The elements which give the greatest number of oxidation states occur in or near the middle of the series. Manganese, for example, exhibits all the oxidation states from +2 to +7. The lesser number of oxidation states at the extreme ends stems from either too few electrons to lose or share (Sc, Ti) or too many d electrons (hence fewer orbitals available in which to share electrons with others) for higher valence (Cu, Zn). Thus, early in the series scandium(II) is virtually unknown and titanium (IV) is more stable than Ti(III) or Ti(II). At the other end, the only oxidation state of zinc is +2 (no d electrons are involved). The maximum oxidation states of reasonable stability correspond in value to the sum of the s and d electrons upto manganese (TiIVO2, VVO2+, CrV1O42–, MnVIIO4–) followed by a rather abrupt decrease in stability of higher oxidation states, so that the typical species to follow are FeII,III, CoII,III, NiII, CuI,II, ZnII.

The variability of oxidation states, a characteristic of transition elements, arises out of incomplete filling of d orbitals in such a way that their oxidation states differ from each other by unity, e.g., VII , VIII , VIV , VV . This is in contrast with the variability of oxidation states of non transition elements where oxidation states normally differ by a unit of two.

An interesting feature in the variability of oxidation states of the d–block elements is noticed among the groups (groups 4 through 10). Although in the p–block the lower oxidation states are favoured by the heavier members (due to inert pair effect), the opposite is true in the groups of d-block. For example, in group 6, Mo(VI) and W(VI) are found to be more stable than Cr(VI). Thus Cr(VI) in the form of dichromate in acidic medium is a strong oxidising agent, whereas MoO3 and WO3 are not.
Low oxidation states are found when a complex compound has ligands capable of π-acceptor character in addition to the σ-bonding. For example, in Ni(CO)4 and Fe(CO)5, the oxidation state of nickel and iron is zero.

Example 8.3
Name a transition element which does not exhibit variable oxidation states.
Solution
Scandium (Z = 21) does not exhibit variable oxidation states.

Intext Question
8.3 Which of the 3d series of the transition metals exhibits the largest number of oxidation states and why ?

Table 8.4 contains the thermochemical parameters related to the transformation of the solid metal atoms to M2+ ions in solution and their standard electrode potentials. The observed values of Eθ and those calculated using the data of Table 8.4 are compared in Fig. 8.4.

The unique behaviour of Cu, having a positive EΘ, accounts for its inability to liberate H2 from acids. Only oxidising acids (nitric and hot concentrated sulphuric) react with Cu, the acids being reduced. The high energy to transform Cu(s) to Cu2+(aq) is not balanced by its hydration enthalpy. The general trend towards less negative EΘ values across the series is related to the general increase in the sum of the first and second ionisation enthalpies. It is interesting to note that the value of E for Mn, Ni and Zn are more negative than expected from the trend.

Example 8.4
Why is Cr2+ reducing and Mn3+ oxidising when both have d4 configuration.
Solution
Cr2+ is reducing as its configuration changes from d4 to d3 , the latter having a half-filled t2g level (see Unit 9) . On the other hand, the change from Mn2+ to Mnd3+ results in the half-filled (d ) configuration which has extra stability.

Intext Question
8.4 The EΘ(M2+/M) value for copper is positive (+0.34V). What is possibly the reason for this? (Hint: consider its high ΔaHΘ and low ΔhydHΘ)

Table 8 .4: Thermochemical data (kJ mol ) for the first row Transition Elements and the Standard Electrode Potentials for the II Reduction of M to M.

Element (M) ΔiHΘ(M) ΔiH1Θ ΔiH2Θ ΔhydHΘ(M2+) EΘ/V
Ti 469 661 1310 -1866 -1.63
V 515 648 1370 -1895 -1.18
Cr 398 653 1590 -1925 -0.90
Mn 279 716 1510 -1862 -1.18
Fe 418 762 1560 -1998 -0.44
Co 427 757 1640 -2079 -0.28
Ni 431 736 1750 -2121 -0.25
Cu 339 745 1960 -2121 0.34
Zn 130 908 1730 -2059 -0.76

The stability of the half-filled d sub-shell in Mn2+ and the completely filled d10 configuration in Zn2+ are related to their EΘ values, whereas EΘ for Ni is related to the highest negative ΔhydHΘ .

8.3.6 Trends in the M3+/M2+ Standard Electrode Potentials

An examination of the EΘ (M3+/M2+) values (Table 8.2) shows the varying trends. The low value for Sc3+ reflects the stability of Sc which has a noble gas configuration. The highest value for Zn is due to the removal of an electron from the stable d10 configuration of Zn2+ . The comparatively high value for Mn shows that Mn2+ (d5 ) is particularly stable, whereas comparatively low value for Fe shows the extra stability of Fe3+ (d5 ). The comparatively low value for V is related to the stability of V2+ (half-filled t2g level, Unit 9).

An examination of the EΘ (M3+/M2+ ) values (Table 8.2) shows the varying trends. The low value for Sc reflects the stability of Sc which has a noble gas configuration. The highest value for Zn is due to the removal of an electron from the stable d10 configuration of Zn2+ . The comparatively high value for Mn shows that Mn2+ (d5 ) is particularly stable, whereas comparatively low value for Fe shows the extra stability of Fe3+ (d5 ). The comparatively low value for V is related to the stability of V2+ (half-filled t2g level, Unit 9).

8.3.7 Trends in Stability of Higher Oxidation States

Table 8.5 shows the stable halides of the 3d series of transition metals. The highest oxidation numbers are achieved in TiX4 (tetrahalides), VF5 and CrF6. The +7 state for Mn is not represented in simple halides but MnO3F is known, and beyond Mn no metal has a trihalide except FeX3 and CoF3. The ability of fluorine to stabilise the highest oxidation state is due to either higher lattice energy as in the case of CoF3, or higher bond enthalpy terms for the higher covalent compounds, e.g., VF5 and CrF6.
Although VV is represented only by VF5, the other halides, however, undergo hydrolysis to give oxohalides, VOX3. Another feature of fluorides is their instability in the low oxidation states e.g., VX2 (X = CI, Br or I)

key: X = F →I; X1 = F → Br; XII = F, Cl; XIII =Cl→I

+1       CuXIII

Table 8.5: Formulas of Halides of 3d Metals
Oxidation Number
+6 CrF6
+5 VF5 CrF5
+4 TiX4 VX14 CrX4 MnF4
+3 TiX3 VX3 CrX3 MnF3 FeXI3 CoF3
+2 TiX2III VX2 CrX2 MnX2 FeX2 CoX2 NiX2 CuX2II ZnX2

and the same applies to CuX. On the other hand, all CuII halides are known except the iodide. In this case, Cu2+ oxidises I to I2:
2Cu2+ + 4I → Cu2I2 ( s ) + I2
However, many copper (I) compounds are unstable in aqueous solution and undergo disproportionation.
2Cu+ → Cu2+ + Cu
The stability of Cu2+ (aq) rather than Cu+ (aq) is due to the much more negative ΔhydHΘ of Cu2+ (aq) than Cu+ , which more than compensates for the second ionisation enthalpy of Cu.
The ability of oxygen to stabilise the highest oxidation state is demonstrated in the oxides. The highest oxidation number in the oxides (Table 8.6) coincides with the group number and is attained in Sc2O3 to Mn2O7. Beyond Group 7, no higher oxides of Fe above Fe2O3, are known, although ferrates (VI)(FeO4)2–, are formed in alkaline media but they readily decompose to Fe2O3 and O2. Besides the oxides, oxocations stabilise Vv as VO2+, VIV as VO2+ and TiIV as TiO2+. The ability of oxygen to stabilise these high oxidation states exceeds that of fluorine. Thus the highest Mn fluoride is MnF4 whereas the highest oxide is Mn2O7. The ability of oxygen to form multiple bonds to metals explains its superiority. In the covalent oxide Mn2O7, each Mn is tetrahedrally surrounded by O’s including a Mn–O–Mn bridge. The tetrahedral [MO4]n- ions are known for VV, CrVl, MnV, MnVl and MnVII.

Table 8.6: Oxides of 3d Metals
Oxidation Number Group
3 4 5 6 7 8 9 10 11 12
+7 Mn2O7
+6 CrO3
+5 V2O5
+4 TiO2 V2O4 CrO2 MnO2
+3 Sc2O3 Ti2O3 V2O3 Cr2O3 Mn2O3 Fe2O3
Mn3O4* Fe3O4* Co3O4*
+2 TiO VO (CrO) MnO FeO CoO NiO CuO ZnO
Cu2O

Example 8.5
How would you account for the increasing oxidising power in the series VO2+ < Cr2O72– < MnO4 ?
Solution
This is due to the increasing stability of the lower species to which they are reduced.

Intext Question
8.5 How would you account for the irregular variation of ionisation enthalpies (first and second) in the first series of the transition elements?

8.3.8 Chemical Reactivity and EΘ Values

Transition metals vary widely in their chemical reactivity. Many of them are sufficiently electropositive to dissolve in mineral acids, although a few are ‘noble’—that is, they are unaffected by simple acids.

The metals of the first series with the exception of copper are relatively more reactive and are oxidised by 1M H+ , though the actual rate at which these metals react with oxidising agents like hydrogen ion (H+) is sometimes slow. For example, titanium and vanadium, in practice, are passive to dilute non oxidising acids at room temperature. The EΘ values for M2+ /M (Table 8.2) indicate a decreasing tendency to form divalent cations across the series. This general trend towards less negative E&Theta values is related to the increase in the sum of the first and second ionisation enthalpies. It is interesting to note that the EΘ values for Mn, Ni and Zn are more negative than expected from the general trend. Whereas the stabilities of half-filled d subshell (d5) in Mn2+ and completely filled d subshell (d10 ) in zinc are related to their Ee values; for nickel, EΘ value is related to the highest negative enthalpy of hydration.

An examination of the EΘ values for the redox couple M3+/M2+ (Table 8.2) shows that Mn3+ and Co3+ ions are the strongest oxidising agents in aqueous solutions. The ions Ti2+ , V2+ and Cr2+ are strong reducing agents and will liberate hydrogen from a dilute acid, e.g.,
2 Cr2+(aq) + 2 H+(aq) → 2 Cr3+(aq) + H2(g)

Example 8.6 For the first row transition metals the EΘ values are:
EΘ     V     Cr     Mn      Fe     Co     Ni     Cu
(M2+/M) –1.18       – 0.91      –1.18       – 0.44       – 0.28     – 0.25     +0.34
Explain the irregularity in the above values.
Solution
The EΘ (M2+/M) values are not regular which can be explained from the irregular variation of ionisation enthalpies ( ΔiH1 + ΔiH2 ) and also the sublimation enthalpies which are relatively much less for manganese and vanadium.

Example 8.7
Why is the EΘ value for the Mn3+/Mn2+ couple much more positive than that for Cr3+ /Cr2+ or Fe3+ /Fe2+ ? Explain.
Solution
Much larger third ionisation energy of Mn (where the required change is d5 to d4 ) is mainly responsible for this. This also explains why the +3 state of Mn is of little importance.

Intext Questions
8.6 Why is the highest oxidation state of a metal exhibited in its oxide or fluoride only?
8.7 Which is a stronger reducing agent Cr2+ or Fe2+ and why ?

8.3.9 Magnetic Properties

When a magnetic field is applied to substances, mainly two types of magnetic behaviour are observed: diamagnetism and paramagnetism (Unit 1). Diamagnetic substances are repelled by the applied field while the paramagnetic substances are attracted. Substances which are attracted very strongly are said to be ferromagnetic. In fact, ferromagnetism is an extreme form of paramagnetism. Many of the transition metal ions are paramagnetic.

Paramagnetism arises from the presence of unpaired electrons, each such electron having a magnetic moment associated with its spin angular momentum and orbital angular momentum. For the compounds of the first series of transition metals, the contribution of the orbital angular momentum is effectively quenched and hence is of no significance. For these, the magnetic moment is determined by the number of unpaired electrons and is calculated by using the ‘spin-only’ formula, i.e.,

Mu ( μ ) = √(n(n+2))   i.e. root of [ n ( n + 2 ) ]

where n is the number of unpaired electrons and μ is the magnetic moment in units of Bohr magneton (BM). A single unpaired electron has a magnetic moment of 1.73 Bohr magnetons (BM).
The magnetic moment increases with the increasing number of unpaired electrons. Thus, the observed magnetic moment gives a useful indication about the number of unpaired electrons present in the atom, molecule or ion. The magnetic moments calculated from the ‘spin-only’ formula and those derived experimentally for some ions of the first row transition elements are given in Table 8.7. The experimental data are mainly for hydrated ions in solution or in the solid state.

Table 8.7: Calculated and Observed Magnetic Moments (BM)
Ion configuration Unpaired electron(s) Group
Calculated Observed
Sc3+ 3d0 0 0 0
Ti3+ 3d1 1 1.73 1.75
TL2+ 3d2 2 2.84 2.76
V+2 3d3 3 3.87 3.86
Cr2+ 3d4 4 4.90 4.80
Mn2+ 3d5 5 5.92 5.96
Fe2+ 3d6 4 4.90 5.3 – 5.5
Co+2 3d7 3 3.87 4.4 – 5.2
Ni2+ 3d8 2 2.84 2.9 – 3,4
Cu2+ 3d9 1 1.73
Zn2+ 3d10 O O

Example 8.8
Calculate the magnetic moment of a divalent ion in aqueous solution if its atomic number is 25.
Solution
With atomic number 25, the divalent ion in aqueous solution will have d5 configuration (five unpaired electrons). The magnetic moment, μ is

μ = √(( 5 ( 5 + 2 )) = 5.92 BM

Intext Question
8.8 Calculate the ‘spin only’ magnetic moment of M2+ (aq) ion (Z = 27).

8.3.10 Formation of Coloured Ions

When an electron from a lower energy d orbital is excited to a higher energy d orbital, the energy of excitation corresponds to the frequency of light absorbed (Unit 9). This frequency generally lies in the visible region. The colour observed corresponds to the complementary colour of the light absorbed. The frequency of the light absorbed is determined by the nature of the ligand. In aqueous solutions where water molecules are the ligands, the colours of the ions observed are listed in Table 8.8. A few coloured solutions of d–block elements are illustrated in Fig. 8.5.

🙂

34a Fig 8.5 colours

🙂

3d0

Table 8.8: Colours of Some of the First Row (aquated) Transition Metal Ions
Configuration Example Colour
3d0 Sc3+ Colourless
Ti4+ Colourless
3d1 Ti3+ purple
3d1 V4+ blue
3d2 V3+ green
3d3 V2+ violet
3d3 Cr3+ Violet
3d4 Mn3+ Violet
3d4 Cr2+ blue
3d5 Mn2+ pink
3d5 Fe3+ Yellow
3d6 Fe2+ green
3d63d7 Co3+Co2+ bluepink
3d8 Ni2+ green
3d9 Cu2+ blue
3d10 Zn2+ Colorless

8.3.11 Formation of Complex Compounds

Complex compounds are those in which the metal ions bind a number of anions or neutral molecules giving complex species with characteristic properties. A few examples are: [Fe(CN)6]3–, [Fe(CN)6]4–, [Cu(NH3)4]2+ and [PtCl4]2+ . (The chemistry of complex compounds is dealt with in detail in Unit 9). The transition metals form a large number of complex compounds. This is due to the comparatively smaller sizes of the metal ions, their high ionic charges and the availability of d orbitals for bond formation.

8.3.12 Catalytic Properties

The transition metals and their compounds are known for their catalytic activity. This activity is ascribed to their ability to adopt multiple oxidation states and to form complexes. Vanadium(V) oxide (in Contact Process), finely divided iron (in Haber’s Process), and nickel (in Catalytic Hydrogenation) are some of the examples. Catalysts at a solid surface involve the formation of bonds between reactant molecules and atoms of the surface of the catalyst (first row transition metals utilise 3d and 4s electrons for bonding). This has the effect of increasing the concentration of the reactants at the catalyst surface and also weakening of the bonds in the reacting molecules (the activation energy is lowering ). Also because the transition metal ions can change their oxidation states, they become more effective as catalysts. For example, iron(III) catalyses the reaction between iodide and persulphate ions.
2 I + S2O82− → I2 + 2 SO42−
An explanation of this catalytic action can be given as:
2 Fe3+ + 2 I → 2 Fe2+ + I2
2 Fe2+ + S2O82− → 2 Fe3+ + 2SO42−

8.3.13 Formation of Interstitial Compounds

Interstitial compounds are thosewhich are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals. They are usually non stoichiometric and are neither typically ionic nor covalent, for example, TiC, Mn4N, Fe3H, VH0.56 and TiH1.7, etc. The formulas quoted do not, of course, correspond to any normal oxidation state of the metal. Because of the nature of their composition, these compounds are referred to as interstitial compounds. The principal physical and chemical characteristics of these compounds are as follows:
(i) They have high melting points, higher than than those of pure metals.
(ii) They are very hard, some borides approach diamond in hardness.
(iii) They retain metallic conductivity.
(iv) They are chemically inert.

8.3.14 Alloy Formation

An alloy is a blend of metals prepared by mixing the components. Alloys may be homogeneous solid solutions in which the atoms of one metal are distributed randomly among the atoms of the other. Such alloys are formed by atoms with metallic radii that are within about 15 percent of each other. Because of similar radii and other characteristics of transition metals, alloys are readily formed by these metals. The alloys so formed are hard and have often high melting points. The best known are ferrous alloys: chromium, vanadium, tungsten, molybdenum and manganese are used for the production of a variety of steels and stainless steel. Alloys of transition metals with non transition metals such as brass (copper-zinc) and bronze (copper-tin), are also of considerable industrial importance.

Example 8.9
What is meant by ‘disproportionation’ of an oxidation state? Give an example.
Solution
When a particular oxidation state becomes less stable relative to other oxidation states, one lower, one higher, it is said to undergo disproportionation. For example, manganese (VI) becomes unstable relative to manganese(VII) and manganese (IV) in acidic solution.
3 MnVIO42– + 4 H+ → 2 MnVIIO–4 + MnIVO2 + 2H2O

Intext Question
8.9 Explain why Cu+ ion is not stable in aqueous solutions?

8.4 Some Important Compounds of Transition Elements

8.4.1 Oxides and Oxoanions of Metals

These oxides are generally formed by the reaction of metals with oxygen at high temperatures. All the metals except scandium form MO oxides which are ionic. The highest oxidation number in the oxides, coincides with the group number and is attained in Sc2O3 to Mn2O7. Beyond group 7, no higher oxides of iron above Fe2O3 are known. Besides the oxides, the oxocations stabilise Vv as VO2+ , VIV as VO2+ and TiIV as TiO2+ .
As the oxidation number of a metal increases ionic character decreases. In the case of Mn, Mn2O7 is a covalent green oil. Even CrO3 and V2O5 have low melting points. In these higher oxides, the acidic character is predominant.
Thus, Mn2O7 gives HMnO4 and CrO3 gives H2CrO4 and H2Cr2O7. V2O5 is, however, amphoteric though mainly acidic and it gives VO43− as well as VO2+ salts. In vanadium there is gradual change from the basic V2O3 to less basic V2O4 and to amphoteric V2O5. V2O4 dissolves in acids to give VO2+ salts. Similarly, V2O5 reacts with alkalies as well as acids to give VO3 −4 and VO4+ respectively. The well characterised CrO is basic but Cr2O3 is amphoteric.

Potassium dichromate K2Cr2O7

Potassium dichromate is a very important chemical used in leather industry and as an oxidant for preparation of many azo compounds. Dichromates are generally prepared from chromate, which in turn are obtained by the fusion of chromite ore (FeCr2O4) with sodium or potassium carbonate in free access of air. The reaction with sodium carbonate occurs as follows:
4FeCr2O4 + 8Na2CO3 + 7O2 → 8Na2CrO4 + 2Fe2O3 + 8CO2
The yellow solution of sodium chromate is filtered and acidified with sulphuric acid to give a solution from which orange sodium dichromate, Na2Cr2O7. 2H2O can be crystallised.
2Na2CrO4 + 2H → Na2Cr2O7 + 2Na + H2O
Sodium dichromate is more soluble than potassium dichromate. The latter is therefore, prepared by treating the solution of sodium dichromate with potassium chloride.
Na2Cr2O>sub>7 + 2KCl → K2Cr2O7 + 2NaCl
Orange crystals of potassium dichromate crystallise out. The chromates and dichromates are interconvertible in aqueous solution depending upon pH of the solution. The oxidation state of chromium in chromate and dichromate is the same.
2CrO4 + 2H → Cr2O7 + H2O
Cr2O7 + 2OH → 2CrO4 + H2O
The structures of chromate ion, CrO42− and the dichromate ion, Cr2O72− are shown below. The chromate ion is tetrahedral whereas the dichromate ion consists of two tetrahedra sharing one corner with Cr–O–Cr bond angle of 126°. Sodium and potassium dichromates are strong oxidising agents; the sodium salt has a greater solubility in water and is extensively used as an oxidising agent in organic chemistry. Potassium dichromate is used as a primary standard in volumetric analysis. In acidic solution, its oxidising action can be represented as follows:
Cr2O72− + 14H+ + 6e → 2Cr3+ + 7H2O (Eθ = 1.33V)
Thus, acidified potassium dichromate will oxidise iodides to iodine, sulphides to sulphur, tin(II) to tin(IV) and iron(II) salts to iron(III). The half-reactions are noted below:
6 I → 3I2 + 6e ;      3Sn2+ → 3Sn4+ + 6 e
3 H2S → 6H+ + 3S + 6e ;      6 Fe2+ → 6Fe3+ + 6e
The full ionic equation may be obtained by adding the half-reaction for potassium dichromate to the half-reaction for the reducing agent, for e.g.,
Cr2O72− + 14H+ + 6Fe2+ → 2Cr3+ + 6Fe3+ + 7H2O

Potassium permanganate KMnO4

Potassium permanganate is prepared by fusion of MnO2 with an alkali metal hydroxide and an oxidising agent like KNO3. This produces the dark green K2MnO4 which disproportionates in a neutral or acidic solution to give permanganate.
2MnO2 + 4KOH + O2 → 2K2MnO4 + 2H2O
3MnO42– + 4H+ → 2MnO4 + MnO2 + 2H2O

Commercially it is prepared by the alkaline oxidative fusion of MnO2 followed by the electrolytic oxidation of manganate (Vl).

🙂

35a MnO2

🙂

In the laboratory, a manganese (II) ion salt is oxidised by peroxodisulphate to permanganate.

2Mn2+ + 5S2O82− + 8H2O → 2MnO4 + 10SO42− + 16H+

Potassium permanganate forms dark purple (almost black) crystals which are isostructural with those of KClO4. The salt is not very soluble in water (6.4 g/100 g of water at 293 K), but when heated it decomposes at 513 K.

2KMnO4 → K2MnO4 + MnO2 + O2

It has two physical properties of considerable interest: itsintense colour and its weak temperature dependent paramagnetism. These can be explained by the use of molecular orbital theory which is beyond the present scope.

The manganate and permanganate ions are tetrahedral; the green manganate is paramagnetic with one unpaired electron but the permanganate is diamagnetic.

🙂

36a Tetrahedral manganate

🙂

The full reaction can be written by adding the half-reaction for KMnO4 to the half-reaction of the reducing agent, balancing wherever necessary.

If we represent the reduction of permanganate to manganate, manganese dioxide and manganese(II) salt by half-reactions,

MnO4 + e → MnO42–      (EΘ = + 0.56 V)
MnO4 + 4H+ + 3e → MnO2 + 2H2O
(EΘ = + 1.52 V)
MnO4 + 8H+ + 5e → Mn2+ + 4H2O

We can very well see that the hydrogen ion concentration of the solution plays an important part in influencing the reaction. Although many reactions can be understood by consideration of redox potential, kinetics of the reaction is also an important factor. permanganate at [H+ ] = 1 should oxidise water but in practice the reaction is extremely slow unless either manganese(ll) ions are present or the temperature is raised.

A few important oxidising reactions of KMnO4 are given below:

1. In acid solutions:
(a) Iodine is liberated from potassium iodide :
10I + 2MnO4 + 16H+ ——> 2Mn2+ + 8H2O + 5I2
(b) Fe2+ ion (green) is converted to Fe3+ (yellow):
5Fe2+ + MnO4 + 8H+ ——> Mn2+ + 4H2O + 5Fe3+
(c) Oxalate ion or oxalic acid is oxidised at 333 K:
5C2O42−+ 2MnO4minus; + 16H+ ——> 2Mn2+ + 8H2O + 10CO2
(d) Hydrogen sulphide is oxidised, sulphur being precipitated:
H2S —> 2H+ + S2−
5S2− + 2MnO4 + 16H+ ——> 2Mn2+ + 8H2O + 5S
(e) Sulphurous acid or sulphite is oxidised to a sulphate or sulphuric acid:
5SO32− + 2MnO4 + 6H+ ——> 2Mn2+ + 3H2O + 5SO42−
(f) Nitrite is oxidised to nitrate:
5NO2 + 2MnO4 + 6H+ ——> 2Mn2+ + 5NO3 + 3H2O

2. In neutral or faintly alkaline solutions:
(a) A notable reaction is the oxidation of iodide to iodate:
2MnO4 + H2O + I ——> 2MnO2 + 2OH + IO3
(b) Thiosulphate is oxidised almost quantitatively to sulphate:
8MnO4 + 3S2O32– + H2O ——> 8MnO2 + 6SO42– + 2OH
(c) Manganous salt is oxidised to MnO2; the presence of zinc sulphate or zinc oxide catalyses the oxidation:
2MnO4 + 3Mn2+ + 2H2O ——> 5MnO2 + 4H+
Note: Permanganate titrations in presence of hydrochloric acid are unsatisfactory since hydrochloric acid is oxidised to chlorine.

Uses:
Besides its use in analytical chemistry, potassium permanganate is used as a favourite oxidant in preparative organic chemistry. Its uses for the bleaching of wool, cotton, silk and other textile fibres and for the decolourisation of oils are also dependent on its strong oxidising power.

THE INNER TRANSITION ELEMENTS ( f-BLOCK)

The f-block consists of the two series, lanthanoids (the fourteen elements following lanthanum) and actinoids (the fourteen elements following actinium). Because lanthanum closely resembles the lanthanoids, it is usually included in any discussion of the lanthanoids for which the general symbol Ln is often used. Similarly, a discussion of the actinoids includes actinium besides the fourteen elements constituting the series. The lanthanoids resemble one another more closely than do the members of ordinary transition elements in any series. They have only one stable oxidation state and their chemistry provides an excellent opportunity to examine the effect of small changes in size and nuclear charge along a series of otherwise similar elements. The chemistry of the actinoids is, on the other hand, much more complicated. The complication arises partly owing to the occurrence of a wide range of oxidatoxidation states in these elements and partly because their radioactivity creates special problems in their study; the two series will be considered separately here.

8.5 The Lanthanoids

The names, symbols, electronic configurations of atomic and some ionic states and atomic and ionic radii of lanthanum and lanthanoids (for which the general symbol Ln is used) are given in Table 8.9.

8.5.1 Electronic Configurations

It may be noted that atoms of these elements have electronic configuration with 6s2 common but with variable occupancy of 4f level (Table 8.9). However, the electronic configurations of all the tripositive ions (the most stable oxidation state of all the lanthanoids) are of the form 4fn (n = 1 to 14 with increasing atomic number).

8.5.2 Atomic and Ionic Sizes

The overall decrease in atomic and ionic radii from lanthanum to lutetium (the lanthanoid contraction) is a unique feature in the chemistry of the lanthanoids. It has far reaching consequences in the chemistry of the third transition series of the elements. The decrease in atomic radii (derived from the structures of metals) is not quite regular as it is regular in M3+ ions (Fig. 8.6). This contraction is, of course, similar to that observed in an ordinary transition series and is attribute d to the same cause, the imperfect shielding of one electron by another in the same sub-shell. However, the shielding of one 4 f electron by another is less than one d electron by another with the increase in nuclear charge along the series. There is fairly regular decrease in the sizes with increasing atomic number.
The cumulative effect of the contraction of the lanthanoid series, known as lanthanoid contraction, causes the radii of the members of the third transition series to be very similar to those of the corresponding members of the second series. The almost identical radii of (160 pm) and Hf (159 pm), a consequence of the lanthanoid contraction, account for their Atomic number occurrence together in nature and for the difficulty faced in their separation.

🙂

37a Fig 8.6 Trends in ionic radii

🙂

8.5.3 Oxidation States

In the lanthanoids, La(III) and Ln(III) compounds are predominant species. However, occasionally +2 and +4 ions in solution or in solid compounds are also obtained. This irregularity (as in ionisation enthalpies) arises mainly from the extra stability of empty, half-filled or filled f subshell. Thus, the formation of CeIV is favoured by its noble gas configuration, but it is a strong oxidant reverting to the common +3 state. The EΘ value for Ce4+/ Ce3+ is + 1.74 V which suggests that it can oxidise water. However, the reaction rate is very slow and hence Ce(IV) is a good analytical reagent. Pr, Nd, Tb and Dy also exhibit +4 state but only in oxides, MO2. Eu2+ is formed by losing the two s electrons and its f7 configuration accounts for the formation of this ion. However, Eu2+ is a strong reducing agent changing to the common +3 state. Similarly Yb2+ which has f 14 configuration is a reductant. TbIV has half-filled f-orbitals and is an oxidant. The behaviour of samarium is very much like europium, exhibiting both +2 and +3 oxidation states.

Table 8.9: Electronic Configurations and Radii of Lanthanum and Lanthanoids
Atomic Number Name symbol Electronic configurations* Radii/pm
Ln Ln2+ Ln3+ Ln4+ Ln Ln3+
57 Lanthanum La 5d16s2 5d1 4f0 187 106
58 Cerium Ce 4f15d16s2 4f2 4f1 4f0 183 103
59 Praseodymium Pr 4f36s2 4f3 4f2 4f1 182 101
60 Neodymium Nd 4f46s2 4f4 4f3 4f2 181 99
61 Promethium Pm 4f56s2 4f5 4f4 181 98
62 Samarium Sm 4f66s2 4f6 4f5 180 90
63 Europium Eu 4f76f2 4f7 4f6 199 95
64 Gadolinium Gd 4f75d16s2 4f75d1 4f7 180 94
65 Terbium Tb 4f96f2 4f9 4f8 4f7 178 92
66 Dysprosium Dy 4f106s2 4f10 4f9 4f8 177 91
67 Holmium Ho 4f116s2 4f11 4f10 176 89
68 Erbium Er 4f126s2 4f12 4f11 175 87
69 Thulium Tm 4f136s2 4f13 4f12 174 87
70 Ytterbium Yb 4f146s2 4f14 4f13 173 86
71 Lutetium Lu 4f145d16s2 4f145d1 4f14

8.5.4 General Characteristics

All the lanthanoids are silvery white soft metals and tarnish rapidly in air. The hardness increases with increasing atomic number, samarium being steel hard. Their melting points range between 1000 to 1200 K but samarium melts at 1623 K. They have typical metallic structure and are good conductors of heat and electricity. Density and other properties change smoothly except for Eu and Yb and occasionally for Sm and Tm.

Many trivalent lanthanoid ions are coloured both in the solid state and in aqueous solutions. Colour of these ions may be attributed to the presence of f electrons. Neither La3+M nor Lu3+ ion shows any colour but the rest do so. However, absorption bands are narrow, probably because of the excitation within f level. The lanthanoid ions other than the f° type (La3+ and Ce4+ ) and the f14 type (Yb2+ and Lu3+ ) are all paramagnetic. The paramagnetism rises to maximum in neodymium.

The first ionisation enthalpies of the lanthanoids are around 600 kJ mol–1, the second about 1200 kJ mol–1 comparable with those of calcium. A detailed discussion of the variation of the third ionisation enthalpies indicates that the exchange enthalpy considerations (as in 3d orbitals of the first transition series), appear to impart a certain degree of stability to empty, half-filled and completely filled orbitals f level. This is indicated from the abnormally low value of the third ionisation enthalpy of lanthanum, gadolinium and lutetium.
In their chemical behaviour, in general, the earlier members of the series are quite reactive similar to calcium but, with increasing atomic number, they behave more like aluminium. Values for EΘ for the half-reaction:
Ln3+ (aq) + 3e → Ln(s)

are in the range of –2.2 to –2.4 V except for Eu for which the value is – 2.0 V. This is, of course, a small variation. The metals combine with hydrogen when gently heated in the gas. The carbides, Ln3C, Ln2C3 and LnC2 are formed when the metals are heated with with carbon. They liberate hydrogen from dilute acids and burn in halogens to form halides. They form oxides M2O3 and hydroxides M(OH)3. The hydroxides are definite compounds, not just hydrated oxides. They are basic like alkaline earth metal oxides and hydroxides. Their general reactions are
depicted in Fig. 8.7.

🙂

38a Fig 8.7 Chemical reactions

🙂

The best single use of the lanthanoids is for the production of alloy steels for plates and pipes. A well known alloy is mischmetall which consists of a lanthanoid metal (~ 95%) and iron (~ 5%) and traces of S, C, Ca and Al. A good deal of mischmetall is used in Mg-based alloy to produce bullets, shell and lighter flint. Mixed oxides of lanthanoids are employed as catalysts in petroleum cracking. Some individual Ln oxides are used as phosphors in television screens and similar fluorescing surfaces.

8.6 The Actinoids

The actinoids include the fourteen elements from Th to Lr. The names, symbols and some properties of these elements are given in Table 8.10.

4+

Table 8.9: Electronic Configurations and Radii of Lanthanum and Lanthanoids
Atomic Number Name symbol Electronic configurations* Radii/pm
M M3+ M4+ M3+ M
89 Actinium Ac 6d17s2 5f0 111
90 Thorium Th 6d27s2 5f1 5f0 99
91 Proctactiniium Pa 5f26d17s2 5f2 5f1 96
92 Uranium U 5f36d17s2 5f3 5f2 103 93
93 Neptunium Np 5f46d17s2 5f4 5f3 101 92
94 Plutonium Pu 5f67s2 5f5 5f4 100 90
95 Americium Am 5f77s2 5f6 5f5 99 89
96 Curium Cm 5f76d17s2 5f7 5f7 99 98
97 Berkelium Bk 5f97s2 5f85f79886
98 Californium Cf 5f107s2 5f9 5f8 98 86
99 Einstenium Es 5f117s2 5f10 5f9
100 Fermium Fm 5f127s2 5f11 5f10
101 Mendelevium Md 5f137s2 5f12 5f11
102 Nobelium No 5f147s2 5f13 5f12
103 Lawrencium Lr 5f146s17s2 5f14 5f13

The actinoids are radioactive elements and the earlier members have relatively long half-lives, the latter ones have half-life values ranging from a day to 3 minutes for lawrencium (Z =103). The latter members could be prepared only in nanogram quantities. These facts render their study more difficult.

8.6.1 Electronic Configurations

All the actinoids are believed to have the electronic configuration of 7s2 and variable occupancy of the 5f and 6d subshells. The fourteen electrons are formally added to 5f, though not in thorium (Z = 90) but from Pa onwards the 5f orbitals are complete at element 103. The irregularities in the electronic configurations of the actinoids, like those in the lanthanoids are related to the stabilities of the f° , f7 and f14 occupancies of the 5f orbitals. Thus, the configurations of Am and Cm are [Rn] 5f77s2 and [Rn] 5f7 6d1 7s2 . Although the 5f orbitals resemble the 4f orbitals in their angular part of the wave-function, they are not as buried as 4f orbitals and hence 5f electrons can participate in bonding to a far greater extent.8.6.2 Ionic Sizes
The general trend in lanthanoids is observable in the actinoids as well. There is a gradual decrease in the size of atoms or M3+ ions across the series. This may be referred to as the actinoid contraction (like lanthanoid contraction). The contraction is, however, greater from element to element in this series resulting from poor shielding by 5f electrons.

8.6.3 Oxidation States

There is a greater range of oxidation states, which is in part attributed to the fact that the 5f, 6d and 7s levels are of comparable energies. The known oxidation states of actinoids are listed in Table 8.11.

Table 8.11: Oxidation States of Actinium and Actinoids
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5
6 6 6 6
7 7

The actinoids show in general +3 oxidation state. The elements, in the first half of the series frequently exhibit higher oxidation states. For example, the maximum oxidation state increases from +4 in Th to +5, +6 and +7 respectively in Pa, U and Np but decreases in succeeding elements (Table 8.11). The actinoids resemble the lanthanoids in having more compounds in +3 state than in the +4 state. However, +3 and +4 ions tend to hydrolyse. Because the distribution of oxidation states among the actinoids is so uneven and so different for the earlier and latter elements, it is unsatisfactory to review their chemistry in terms of oxidation states.

8.6.4 General Characteristics and Comparison with Lanthanoids

The actinoid metals are all silvery in appearance but display a variety of structures. The structural variability is obtained due to irregularities in metallic radii which are far greater than in lanthanoids.

The actinoids are highly reactive metals, especially when finely divided. The action of boiling water on them, for example, gives a mixture of oxide and hydride and combination with most non metals takes place at moderate temperatures. Hydrochloric acid attacks all metals but most are slightly affected by nitric acid owing to the formation of protective oxide layers; alkalies have no action.

The magnetic properties of the actinoids are more complex than those of the lanthanoids. Although the variation in the magnetic susceptibility of the actinoids with the number of unpaired 5 f electrons is roughly parallel to the corresponding results for the lanthanoids, the latter have higher values.

It is evident from the behaviour of the actinoids that the ionisation enthalpies of the early actinoids, though not accurately known, but are lower than for the early lanthanoids. This is quite reasonable since it is to be expected that when 5f orbitals are beginning to be occupied, they willpenetrate less into the inner core of electrons. The 5f electrons, will therefore, be more effectively shielded from the nuclear charge than the 4f electrons of the corresponding lanthanoids. Because the outer electrons are less firmly held, they are available for bonding in the actinoids.

A comparison of the actinoids with the lanthanoids, with respect to different characteristics as discussed above, reveals that behaviour similar to that of the lanthanoids is not evident until the second half of the actinoid series. However, even the early actinoids resemble the lanthanoids in showing close similarities with each other and in gradual variation in properties which do not entail change in oxidation state. The lanthanoid and actinoid contractions, have extended effects on the sizes, and therefore, the properties of the elements succeeding them in their respective periods. The lanthanoid contraction is more important because the chemistry of elements succeeding the actinoids are much less known at the present time.

Example 8.10 Name a member of the lanthanoid series which is well known to exhibit +4 oxidation state.
Solution
Cerium (Z = 58)

Intext Question
8.10 Actinoid contraction is greater from element to element than lanthanoid contraction. Why?

8.7 Some Applications of d- and f-Block Elements

Iron and steels are the most important construction materials. Their production is based on the reduction of iron oxides, the removal of impurities and the addition of carbon and alloying metals such as Cr, Mn and Ni. Some compounds are manufactured for special purposes such as TiO for the pigment industry and MnO2 for use in dry battery cells. The battery industry also requires Zn and Ni/Cd. The elements of Group 11 are still worthy of being called the coinage metals, although Ag and Au are restricted to collection items and the contemporary UK ‘copper’ coins are copper-coated steel. The ‘silver’ UK coins are a Cu/Ni alloy. Many of the metals and/or their compounds are essential catalysts in the chemical industry. V2O5 catalyses the oxidation of SO2 in the manufacture of sulphuric acid. TiCl4 with Al(CH3)3 forms the basis of the Ziegler catalysts used to manufacture polyethylene (polythene). Iron catalysts are used in the Haber process for the production of ammonia from N2/H2 mixtures. Nickel catalysts enable the hydrogenation of fats to proceed. In the Wacker process the oxidation of ethyne to ethanal is catalysed by PdCl2. Nickel complexes are useful in the polymerisation of alkynes and other organic compounds such as benzene. The photographic industry relies on the special light-sensitive properties of AgBr.

Summary

The d-block consisting of Groups 3-12 occupies the large middle section of the periodic table. In these elements the inner d orbitals are progressively filled. The f-block is placed outside at the bottom of the periodic table and in the elements of this block, 4f and 5f orbitals are progressively filled.

Corresponding to the filling of 3d, 4d and 5d orbitals, three series of transition elements are well recognised. All the transition elements exhibit typical metallic properties such as –high tensile strength, ductility, malleability, thermal and electrical conductivity and metallic character. Their melting and boiling points are high which are attributed to the involvement of (n –1) d electrons resulting into strong interatomic bonding. In many of these properties, the maxima occur at about the middle of each series which indicates that one unpaired electron per d orbital is particularly a favourable configuration for strong interatomic interaction.
Successive ionisation enthalpies do not increase as steeply as in the main group elements with increasing atomic number. Hence, the loss of variable number of electrons from (n –1) d orbitals is not energetically unfavourable. The involvement of (n –1) d electrons in the behaviour of transition elements impart certain distinct characteristics to these elements. Thus, in addition to variable oxidation states, they exhibit paramagnetic behaviour, catalytic properties and tendency for the formation of coloured ions, interstitial compounds and complexes.

The transition elements vary widely in their chemical behaviour. Many of them are sufficiently electropositive to dissolve in mineral acids, although a few are ‘noble’. Of the first series, with the exception of copper, all the metals are relatively reactive.

The transition metals react with a number of non-metals like oxygen, nitrogen, sulphur and halogens to form binary compounds. The first series transition metal oxides are generally formed from the reaction of metals with oxygen at high temperatures. These oxides dissolve in acids and bases to form oxometallic salts. Potassium dichromate and potassium permanganate are common examples. Potassium dichromate is prepared from the chromite ore by fusion with alkali in presence of air and acidifying the extract. Pyrolusite ore (MnO2) is used for the preparation of potassium permanganate. Both the dichromate and the permanganate ions are strong oxidising agents.

The two series of inner transition elements, lanthanoids and actinoids constitute the f-block of the periodic table. With the successive filling of the inner orbitals, 4f, there is a gradual decrease in the atomic and ionic sizes of these metals along the series (lanthanoid contraction). This has far reacting consequences in the chemistry of the elements succeeding them. Lanthanum and all the lanthanoids are rather soft white metals. They react easily with water to give solutions giving +3 ions. The principal oxidation state is +3, although +4 and +2 oxidation states are also exhibited by some occasionally. The chemistry of the actinoids is more complex in view of their ability to exist in different oxidation states. Furthermore, many of the actinoid elements are radioactive which make the study of these elements rather difficult.

There are many useful applications of the d- and f-block elements and their compounds, notable among them being in varieties of steels, catalysts, complexes, organic syntheses, etc.

Exercises
8.1 Write down the electronic configuration of:
(i) Cr3+
(ii) Pm3+
(iii) Cu+
(v) Co2+
(iv) Ce4+
(vi) Lu2+
(vii) Mn2+
(viii) Th4+

8.2 Why are Mn2+ compounds more stable than Fe2+ towards oxidation to their +3 states?
8.3 Explain briefly how +2 state becomes more and more stable in the first half of the first row transition elements with increasing atomic number?
8.4 To what extent do the electronic configurations decide the stability of oxidation states in the first series of the transition elements? Illustrate your answer with examples.
8.5 What may be the stable oxidation state of the transition element with the following d electron configurations in the ground state of their atoms : 3d3 , 3d5 , 3d8 and 3d4 ?
8.6 Name the oxometal anions of the first series of the transition metals in which the metal exhibits the oxidation state equal to its group number.
8.7 What is lanthanoid contraction? What are the consequences of lanthanoid contraction?
8.8 What are the characteristics of the transition elements and why are they called transition elements? Which of the d-block elements may not be regarded as the transition elements?
8.9 In what way is the electronic configuration of the transition elements different from that of the non transition elements?
8.10 What are the different oxidation states exhibited by the lanthanoids?
8.11 Explain giving reasons:
(i) Transition metals and many of their compounds show paramagnetic behaviour.
(ii) The enthalpies of atomisation of the transition metals are high.
(iii) The transition metals generally form coloured compounds.
(iv) Transition metals and their many compounds act as good catalyst.
8.12 What are interstitial compounds? Why are such compounds well known for transition metals?
8.13 How is the variability in oxidation states of transition metals different from that of the non transition metals? Illustrate with examples.
8.14 Describe the preparation of potassium dichromate from iron chromite ore. What is the effect of increasing pH on a solution of potassium dichromate?
8.15 Describe the oxidising action of potassium dichromate and write the ionic
equations for its reaction with:
(i) iodide
(ii) iron(II) solution and
(iii) H2S
8.16 Describe the preparation of potassium permanganate. How does the acidified permanganate solution react with (i) iron(II) ions (ii) SO2 and (iii) oxalic acid? Write the ionic equations for the reactions.
8.17 For M2+/M and M3+/M2+ systems the EΘ values for some metals are as follows:
Cr2+/Cr    -0.9V    Cr3/Cr2+    -0.4V
Mn2+/Mn    -1.2V    Mn3+/Mn2+    +1.5V
Fe2+/Fe    -0.4V    Fe3+/Fe2+    +0.8V
Use this data to comment upon:
(i) the stability of Fe3+ in acid solution as compared to that of Cr3+ or Mn3+ and
(ii) the ease with which iron can be oxidised as compared to a similar process for either chromium or manganese metal.
8.18 Predict which of the following will be coloured in aqueous solution? Ti3+, V3+, Cu+, Sc3+, Mn2+, Fe3+ and Co2+. Give reasons for each.
8.19 Compare the stability of +2 oxidation state for the elements of the first transition series.
8.20 Compare the chemistry of actinoids with that of the lanthanoids with special reference to:
(i) electronic configuration
(ii) atomic and ionic sizes and
(iii) oxidation state
(iv) chemical reactivity.
8.21 How would you account for the following:
(i) Of the d4 species, Cr2+ is strongly reducing while manganese(III) is strongly oxidising.
(ii) Cobalt(II) is stable in aqueous solution but in the presence of complexing reagents it is easily oxidised.
(iii) The d1 configuration is very unstable in ions.
8.22 What is meant by ‘disproportionation’? Give two examples of disproportionation reaction in aqueous solution.
8.23 Which metal in the first series of transition metals exhibits +1 oxidation state most frequently and why?
8.24 Calculate the number of unpaired electrons in the following gaseous ions: Mn3+, Cr3+ , V3+ and Ti3+ . Which one of these is the most stable in aqueous solution?
8.25 Give examples and suggest reasons for the following features of the transition metal chemistry:
(i) The lowest oxide of transition metal is basic, the highest is amphoteric/acidic.
(ii) A transition metal exhibits highest oxidation state in oxides and fluorides.
(iii) The highest oxidation state is exhibited in oxoanions of a metal.
8.26 Indicate the steps in the preparation of:
(i) K2Cr2O7 from chromite ore.
(ii) KMnO4 from pyrolusite ore.
8.27 What are alloys? Name an important alloy which contains some of the lanthanoid metals. Mention its uses.
8.28 What are inner transition elements? Decide which of the following atomic numbers are the atomic numbers of the inner transition elements : 29, 59, 74, 95, 102, 104.
8.29 The chemistry of the actinoid elements is not so smooth as that of the lanthanoids. Justify this statement by giving some examples from the oxidation state of these elements.
8.30 Which is the last element in the series of the actinoids? Write the electronic configuration of this element. Comment on the possible oxidation state of this element.
8.31 Use Hund’s rule to derive the electronic configuration of Ce3+ ion, and calculate its magnetic moment on the basis of ‘spin-only’ formula.
8.32 Name the members of the lanthanoid series which exhibit +4 oxidation states and those which exhibit +2 oxidation states. Try to correlate this type of behaviour with the electronic configurations of these elements.
8.33 Compare the chemistry of the actinoids with that of lanthanoids with reference to:
(i) electronic configuration
(ii) oxidation states and
(iii) chemical reactivity.
8.34 Write the electronic configurations of the elements with the atomic numbers 61, 91, 101, and 109.
8.35 Compare the general characteristics of the first series of the transition metals with those of the second and third series metals in the respective vertical columns. Give special emphasis on the following points:
(i) electronic configurations
(ii) oxidation states
(iii) ionisation enthalpies
and (iv) atomic sizes.
8.36 Write down the number of 3d electrons in each of the following ions: Ti2+, V2+,Cr3+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+ and Cu2+. Indicate how would you expect the five 3d orbitals to be occupied for these hydrated ions (octahedral).
8.37 Comment on the statement that elements of the first transition series possess many properties different from those of heavier transition elements.
8.38 What can be inferred from the magnetic moment values of the following complex species ?
Example               Magnetic Moment (BM)
K4[Mn(CN)6)               2.2
[Fe(H2O)6]               5.3
K2[MnCl4]               5.9

Answers to Some Intext Questions
8.1 Silver (Z = 47) can exhibit +2 oxidation state wherein it will have incompletely filled d-orbitals (4d), hence a transition element.
8.2 In the formation of metallic bonds, no eletrons from 3d-orbitals are involved in case of zinc, while in all other metals of the 3d series, electrons from the d-orbitals are always involved in the formation of metallic bonds.
8.3 Manganese (Z = 25), as its atom has the maximum number of unpaired electrons.
8.5 Irregular variation of ionisation enthalpies is mainly attributed to varying degree of stability of different 3d-configurations (e.g., d0 , d5 , d10 are exceptionally stable).
8.6 Because of small size and high electronegativity oxygen or fluorine can oxidise the metal to its highest oxidation state.
8.7 Cr2+ is stronger reducing agent than Fe2+
Reason: d4 → d3 occurs in case of Cr2+ to Cr3+
But d6→ d5 occurs in case of Fe2+ to Fe3+
In a medium (like water) d3 is more stable as compared to d5 (see CFSE)
8.9 Cu+ in aqueous solution underoes disproportionation, i.e.,
2Cu+(aq) → Cu2+(aq) + Cu(s)
The E0 value for this is favourable.
8.10 The 5f electrons are more effectively shielded from nuclear charge. In other words the 5f electrons themselves provide poor shielding from element to element in the series.

I. Multiple Choice Questions (Type-I)

1. Electronic configuration of a transition element X in +3 oxidation state is [Ar]3d5. What is its atomic number?

(i) 25
(ii) 26
(iii) 27
(iv) 24

2. The electronic configuration of Cu(II) is 3d9 whereas that of Cu(I) is 3d10. Which of the following is correct?

(i) Cu(II) is more stable
(ii) Cu(II) is less stable
(iii) Cu(I) and Cu(II) are equally stable
(iv) Stability of Cu(I) and Cu(II) depends on nature of copper salts

3.Metallic radii of some transition elements are given below. Which of these elements will have highest density?

NiCu

Element Fe Co
Metallic radii/pm 126 125 125 128

(i) Fe
(ii) Ni
(iii) Co
(iv) Cu

4. Generally transition elements form coloured salts due to the presence of unpaired electrons. Which of the following compounds will be coloured in solid state?

(i) Ag2SO4
(ii) CuF2
(iii) ZnF2
(iv) Cu2Cl2

5. On addition of small amount of KMnO4 to concentrated H2SO4, a green oily compound is obtained which is highly explosive in nature. Identify the compound from the following.

(i) Mn2O7
(ii) MnO2
(iii) MnSO4
(iv) Mn2O3

6. The magnetic nature of elements depends on the presence of unpaired electrons. Identify the configuration of transition element, which shows highest magnetic moment.

(i) 3d7
(ii) 3d5
(iii) 3d8
(iv) 3d2

7. Which of the following oxidation state is common for all lanthanoids?

(i) +2
(ii) +3
(iii) +4
(iv) +5

8. Which of the following reactions are disproportionation reactions?

(a) Cu+ → Cu2+ + Cu
(b) 3MnO4 + 4H+ → 2MnO4 + MnO2 + 2H2O
(c) 2KMnO4 → K2MnO4 + MnO2 + O2
(d) 2MnO4 + 3Mn2+ + 2H2O → 5MnO2 + 4H+

(i) a, b
(ii) a, b, c
(iii) b, c, d
(iv) a, d

9. When KMnO4 solution is added to oxalic acid solution, the decolourisation is slow in the beginning but becomes instantaneous after some time because

(i) CO2 is formed as the product.
(ii) Reaction is exothermic.
(iii) MnO4 catalyses the reaction.
(iv) Mn2+ acts as autocatalyst.

10. There are 14 elements in actinoid series. Which of the following elements does not belong to this series?

(i) U
(ii) Np
(iii) Tm
(iv) Fm

11. KMnO4 acts as an oxidising agent in acidic medium. The number of moles of KMnO4 that will be needed to react with one mole of sulphide ions in acidic solution is

(i) 2/5
(ii) 3/5
(iii) 4/5
(iv) 1/5

12. Which of the following is amphoteric oxide?

Mn2O7, CrO3, Cr2O3, CrO, V2O5, V2O4

(i) V2O5, Cr2O3
(ii) Mn2O7, CrO3
(iii) CrO, V2O5
(iv) V2O5, V2O4

13. Gadolinium belongs to 4f series. It’s atomic number is 64. Which of the following is the correct electronic configuration of gadolinium?

(i) [Xe] 4f75d16s2
(ii) [Xe] 4f65d26s2
(iii) [Xe] 4f86d2
(iv) [Xe] 4f95s1

14. Interstitial compounds are formed when small atoms are trapped inside the crystal lattice of metals. Which of the following is not the characteristic property of interstitial compounds?

(i) They have high melting points in comparison to pure metals.
(ii) They are very hard.
(iii) They retain metallic conductivity.
(iv) They are chemically very reactive.

15. The magnetic moment is associated with its spin angular momentum and orbital angular momentum. Spin only magnetic moment value of Cr3+ ion is ___________.

(i) 2.87 B.M.
(ii) 3.87 B.M.
(iii) 3.47 B.M.
(iv) 3.57 B.M.

16. KMnO4 acts as an oxidising agent in alkaline medium. When alkaline KMnO4 is treated with KI, iodide ion is oxidised to ____________.

(i) I2
(ii) IO
(iii) IO3
(iv) IO4

17. Which of the following statements is not correct?

(i) Copper liberates hydrogen from acids.
(ii) In its higher oxidation states, manganese forms stable compounds with oxygen and fluorine.
(iii) Mn3+ and Co3+ are oxidising agents in aqueous solution.
(iv) Ti2+ and Cr2+ are reducing agents in aqueous solution.

18. When acidified K2Cr2O7 solution is added to Sn2+ salts then Sn2+ changes to

(i) Sn
(ii) Sn3+
(iii) Sn4+
(iv) Sn+

19. Highest oxidation state of manganese in fluoride is +4 (MnF4) but highest oxidation state in oxides is +7 (Mn2O7) because ____________.

(i) fluorine is more electronegative than oxygen.
(ii) fluorine does not possess d-orbitals.
(iii) fluorine stabilises lower oxidation state.
(iv) in covalent compounds fluorine can form single bond only while oxygen forms double bond.

20. Although Zirconium belongs to 4d transition series and Hafnium to 5d transition series even then they show similar physical and chemical properties because___________.

(i) both belong to d-block.
(ii) both have same number of electrons.
(iii) both have similar atomic radius.
(iv) both belong to the same group of the periodic table.

21. Why is HCl not used to make the medium acidic in oxidation reactions of KMnO4 in acidic medium?

(i) Both HCl and KMnO4 act as oxidising agents.
(ii) KMnO4 oxidises HCl into Cl2 which is also an oxidising agent.
(iii) KMnO4 is a weaker oxidising agent than HCl.
(iv) KMnO4 acts as a reducing agent in the presence of HCl.

II. Multiple Choice Questions (Type-II)

Note : In the following questions two or more options may be correct.

22. Generally transition elements and their salts are coloured due to the presence of unpaired electrons in metal ions. Which of the following compounds are coloured?

(i) KMnO4
(ii) Ce(SO4)2
(iii) TiCl4
(iv) Cu2Cl2

23. Transition elements show magnetic moment due to spin and orbital motion of electrons. Which of the following metallic ions have almost same spin only magnetic moment?

(i) Co2+
(ii) Cr2+
(iii) Mn2+
(iv) Cr3+

24. In the form of dichromate, Cr (VI) is a strong oxidising agent in acidic medium but Mo (VI) in MoO3 and W (VI) in WO3 are not because ___________.

(i) Cr (VI) is more stable than Mo(VI) and W(VI).
(ii) Mo(VI) and W(VI) are more stable than Cr(VI).
(iii) Higher oxidation states of heavier members of group-6 of transition series are more stable.
(iv) Lower oxidation states of heavier members of group-6 of transition series are more stable.

25. Which of the following actinoids show oxidation states upto +7?

(i) Am
(ii) Pu
(iii) U
(iv) Np

26. General electronic configuration of actionoids is (n–2)f1–14 (n-1)d0–2ns2.Which of the following actinoids have one electron in 6d orbital?

(i) U (Atomic no. 92)
(ii) Np (Atomic no.93)
(iii) Pu (Atomic no. 94)
(iv) Am (Atomic no. 95)

27. Which of the following lanthanoids show +2 oxidation state besides the characteristic oxidation state +3 of lanthanoids?

(i) Ce
(ii) Eu
(iii) Yb
(iv) Ho

28. Which of the following ions show higher spin only magnetic moment value?

(i) Ti3+
(ii) Mn2+
(iii) Fe2+
(iv) Co3+

29. Transition elements form binary compounds with halogens. Which of the following elements will form MF3 type compounds?

(i) Cr
(ii) Co
(iii) Cu
(iv) Ni

30. Which of the following will not act as oxidising agents?

(i) CrO3
(ii) MoO3
(iii) WO3
(iv) CrO42–

31. Although +3 is the characteristic oxidation state for lanthanoids but cerium also shows +4 oxidation state because ___________.

(i) it has variable ionisation enthalpy
(ii) it has a tendency to attain noble gas configuration
(iii) it has a tendency to attain f 0 configuration
(iv) it resembles Pb4+

III. Short Answer Type

32. Why does copper not replace hydrogen from acids?
33. Why EΘ values for Mn, Ni and Zn are more negative than expected?
34. Why first ionisation enthalpy of Cr is lower than that of Zn ?
35. Transition elements show high melting points. Why?
36. When Cu2+ ion is treated with KI, a white precipitate is formed. Explain the reaction with the help of chemical equation.

37. Out of Cu2Cl2 and CuCl2, which is more stable and why?
38. When a brown compound of manganese (A) is treated with HCl it gives a gas
(B). The gas taken in excess, reacts with NH3 to give an explosive compound
(C). Identify compounds A, B and C.

39. Although fluorine is more electronegative than oxygen, but the ability of oxygen to stabilise higher oxidation states exceeds that of fluorine. Why?

40. Although Cr3+ and Co2+ ions have same number of unpaired electrons but the magnetic moment of Cr3+ is 3.87 B.M. and that of Co2+ is 4.87 B.M. Why?

41. Ionisation enthalpies of Ce, Pr and Nd are higher than Th, Pa and U. Why?
42. Although Zr belongs to 4d and Hf belongs to 5d transition series but it is quite difficult to separate them. Why?
43. Although +3 oxidation states is the characteristic oxidation state of lanthanoids but cerium shows +4 oxidation state also. Why?
44. Explain why does colour of KMnO4 disappear when oxalic acid is added to its solution in acidic medium.
45. When orange solution containing Cr2O72– ion is treated with an alkali, a yellow solution is formed and when H+ ions are added to yellow solution, an orange solution is obtained. Explain why does this happen?

46. A solution of KMnO4 on reduction yields either a colourless solution or a brown precipitate or a green solution depending on pH of the solution. What different stages of the reduction do these represent and how are they carried out?

47. The second and third rows of transition elements resemble each other much more than they resemble the first row. Explain why?

48. EΘ of Cu is + 0.34V while that of Zn is – 0.76V. Explain.
49. The halides of transition elements become more covalent with increasing oxidation state of the metal. Why?
50. While filling up of electrons in the atomic orbitals, the 4s orbital is filled before the 3d orbital but reverse happens during the ionisation of the atom. Explain why?

51. Reactivity of transition elements decreases almost regularly from Sc to Cu. Explain.

IV. Matching Type

Note : Match the items of Column I and Column II in the following questions.

52. Match the catalysts given in Column I with the processes given in Column II.

Column I (Catalyst) Column II (Process)
(i) Ni in the presence of hydrogen (a) Zieglar Natta catalyst
(ii) Cu2Cl2 (b) Contact process
(iii) V2O5 (c) Vegetable oil to ghee
(iv) Finely divided iron (d) Sandmeyer reaction
(v) TiCl4 + Al(CH3)3 (e) Haber’s Process
(f) Decomposition of KClO3

53. Match the compounds/elements given in Column I with uses given in Column II.

Column I(Compound/element) Column II(Use)
(i) Lanthanoid oxide (a) Production of iron alloy
(ii) Lanthanoid (b) Television screen
(iii) Misch metal (c) Petroleum cracking
(iv) Magnesium based alloy is constituent of (d) Lanthanoid metal + iron
(v) Mixed oxides of lanthanoids are employed (e) Bullets
(f) In X-ray screen

54. Match the properties given in Column I with the metals given in Column II.

Column I(Property) Column II(Metal)
(i) An element which can show +8 oxidation state (a) Mn
(ii) 3d block element that can show upto +7 oxidation state (b) Cr
(iii) 3d block element with highest melting point (c) Os
(d) Fe

55. Match the statements given in Column I with the oxidation states given in Column II.

Column I Column II
(i) Oxidation state of Mn in MnO2 is (a) + 2
(ii) Most stable oxidation state of Mn is (b) + 3
(iii) Most stable oxidation state of Mn in oxides is (c) + 4
(iv) Characteristic oxidation state of lanthanoids is (d) + 5
(e) + 7

56. Match the solutions given in Column I and the colours given in Column II.

Column I(Aqueous solution of salt) Column II(Colour)
(i) FeSO4.7H2O (a) Green
(ii) NiCl2.4H2O (b) Light pink
(iii) MnCl2.4H2O (c) Blue
(iv) CoCl2.6H2O (d) Pale green
(v) Cu2Cl2 (e) Pink
(f) Colourless

57. Match the property given in Column I with the element given in Column II.

Column I(Property) Column II(Element)
(i) Lanthanoid which shows +4 oxidation state (a) Pm
(ii) Lanthanoid which can show +2 oxidation state (b) Ce
(iii) Radioactive lanthanoid (c) Lu
(iv) Lanthanoid which has 4f7 electronic configuration in +3 oxidation state (d) Eu
(v) Lanthanoid which has 4f14 electronic configuration in +3 oxidation state (e) Gd
(f) Dy

58. Match the properties given in Column I with the metals given in Column II.

Column I(Property) Column II(Metal)
(i) Element with highest second ionisation enthalpy (a) Co
(ii) Element with highest third ionisation enthalpy (b) Cr
(iii) M in M (CO)6 is (c) Cu
(iv) Element with highest heat of atomisation (d) Zn
(e) Ni

V. Assertion and Reason Type

Note : In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(i) Both assertion and reason are true, and reason is the correct explanation of the assertion.
(ii) Both assertion and reason are true but reason is not the correct explanation of assertion.
(iii) Assertion is not true but reason is true.
(iv) Both assertion and reason are false.

59. Assertion : Cu2+ iodide is not known.
Reason : Cu2+ oxidises I to iodine.

60. Assertion : Separation of Zr and Hf is difficult.
Reason : Because Zr and Hf lie in the same group of the periodic table.

61. Assertion : Actinoids form relatively less stable complexes as compared to lanthanoids.
Reason : Actinoids can utilise their 5f orbitals along with 6d orbitals in bonding but lanthanoids do not use their 4f orbital for bonding.

62. Assertion : Cu cannot liberate hydrogen from acids.
Reason : Because it has positive electrode potential.

63. Assertion : The highest oxidation state of osmium is +8.
Reason : Osmium is a 5d-block element.

VI. Long Answer Type

64. Identify A to E and also explain the reactions involved.

🙂

39a CuCO3

🙂

65. When a chromite ore (A) is fused with sodium carbonate in free excess of air and the product is dissolved in water, a yellow solution of compound (B) is obtained. After treatment of this yellow solution with sulphuric acid,
compound (C) can be crystallised from the solution. When compound (C) is treated with KCl, orange crystals of compound (D) crystallise out. Identify A to D and also explain the reactions.

66. When an oxide of manganese (A) is fused with KOH in the presence of an oxidising agent and dissolved in water, it gives a dark green solution of compound (B). Compound (B) disproportionates in neutral or acidic solution to give purple compound (C). An alkaline solution of compound (C) oxidises potassium iodide solution to a compound (D) and compound (A) is also formed. Identify compounds A to D and also explain the reactions involved.

67. On the basis of Lanthanoid contraction, explain the following :

(i) Nature of bonding in La2O3 and Lu2O3.
(ii) Trends in the stability of oxo salts of lanthanoids from La to Lu.
(iii) Stability of the complexes of lanthanoids.
(iv) Radii of 4d and 5d block elements.
(v) Trends in acidic character of lanthanoid oxides.

68. (a) Answer the following questions :

(i) Which element of the first transition series has highest second ionisation enthalpy?
(ii) Which element of the first transition series has highest third ionisation enthalpy?
(iii) Which element of the first transition series has lowest enthalpy of atomisation?

(b) Identify the metal and justify your answer.
(i) Carbonyl M(CO)5
(ii) MO3F

69. Mention the type of compounds formed when small atoms like H, C and N get trapped inside the crystal lattice of transition metals. Also give physical and chemical characteristics of these compounds.

70. (a) Transition metals can act as catalysts because these can change their oxidation state. How does Fe(III) catalyse the reaction between iodide and persulphate ions?

(b) Mention any three processes where transition metals act as catalysts.

71. A violet compound of manganese (A) decomposes on heating to liberate oxygen and compounds (B) and (C) of manganese are formed. Compound (C) reacts with KOH in the presence of potassium nitrate to give compound (B). On heating compound (C) with conc. H2SO4 and NaCl, chlorine gas is liberated and a compound (D) of manganese along with other products is formed. Identify compounds A to D and also explain the reactions involved.

ANSWERS

I. Multiple Choice Questions (Type-I)

1. (ii)     2. (i)     3. (iv)     4. (ii)     5. (i)     6. (ii)     7. (ii)     8. (i)     9. (iv)     10. (iii)     11. (i)     12. (i)     13. (i)     14. (iv)     15. (ii)     16. (iii)     17. (i)     18. (iii)     19. (iv)     20. (iii)     21. (ii)

II. Multiple Choice Questions (Type-II)

22. (i), (ii)     23. (i), (iv)     24. (ii), (iii)     25. (ii), (iv)     26. (i), (ii)     27. (ii), (iii)     28. (ii), (iii)     29. (i), (ii)     30. (ii), (iii)     31. (ii), (iii)

III. Short Answer Type

32. Cu shows positive EΘ value.
33. Hint : Negative EΘ values for Mn2+ and Zn2+ are related to stabilities of half filled and fully filled configuration respectively. But for Ni2+ , EΘ value is related to the highest negative enthalpy of hydration.

34. Ionisation enthalpy of Cr is lower due to stability of d5 and the value for Zn is higher because its electron comes out from 4s orbital.

35. The high melting points of transition metals are attributed to the involvement of greater number of electrons in the interatomic metallic bonding from (n-1) d-orbitals in addition to ns electrons

36. Hint : Cu2+ gets reduced to Cu+
2Cu2+ + 4I → Cu2I2 + I2
(white precipitate)

37. Hint : CuCl2 is more stable than Cu2Cl2. The stability of Cu2+ (aq.) rather than Cu+(aq.) is due to the much more negative ΔhydHV of Cu2+ (aq.) than
Cu+(aq.).

38. A = MnO2 B = Cl2 C = NCl3
MnO2 + 4HCl → MnCl2 + Cl2 + 2H2O
(A)                                      (B)

NH3 + 3Cl2 → NCl3 + 3HCl
(excess)    (C)

39. Hint : It is due to the ability of oxygen to form multiple bonds to metals.
40. Hint : Due to symmetrical electronic configuration there is no orbital
contribution in Cr3+ ion. However appreciable orbital contribution takes place in Co2+ ion.

41. Hint : It is because in the beginning, when 5f orbitals begin to be occupied, they will penetrate less into the inner core of electrons. The 5f electrons will therefore, be more effectively shielded from the nuclear charge than 4f electrons of the corresponding lanthanoids. Therefore outer electrons are less firmly held and they are available for bonding in the actinoids.

42. Hint : Due to lanthanoid contraction, they have almost same size (Zr, 160 pm) and (Hf, 159 pm).

43. It is because after losing one more electron Ce acquires stable 4f 0 electronic configuration.

44. KMnO4 acts as oxidising agent. It oxidises oxalic acid to CO2 and itself changes to Mn2+ ion which is colourless.

5C2O42– + 2MnO4 + 16H+ → 2Mn2+ + 8H2O + 10CO2
(Coloured)                    (Colourless)

🙂

40a Dichromate

🙂

46. Oxidising behaviour of KMnO4 depends on pH of the solution. In acidic medium (pH < 7)

MnO4 + 8H+ + 5e → Mn2+ + 4H2O
(Colourless)

In alkaline medium (pH>7)

MnO4 + e → MnO42–
(Green)

In neutral medium(pH=7)

MnO4 + 2H2O + 3e → MnO2 + 4OH
(Brown precipitate)

47. Due to lanthanoid contraction, the atomic radii of the second and third row transition elements is almost same. So they resemble each other much more as compared to first row elements.

48. Hint : High ionisation enthalpy to transform Cu(s) to Cu2+ (aq) is not balanced by its hydration enthalpy. However, in case of Zn after removal of electrons from 4s-orbital, stable 3d10 configuration is acquired.

49. As the oxidation state increases, size of the ion of transition element decreases. As per Fajan’s rule, as the size of metal ion decreases, covalent character of the bond formed increases.

50. n + l rule : For 3d = n + l = 5
4s = n + l = 4
So electron will enter in 4s orbital.
Ionisation enthalpy is responsible for the ionisation of atom. 4s electrons are loosely held by the nucleus. So electrons are removed from 4s orbital prior to 3d.

51. Hint : It is due to regular increase in ionisation enthalpy.

IV. Matching Type

52. (i) → (c) (ii) → (d) (iii) → (b) (iv) → (e) (v) → (a)
53. (i) → (b) (ii) → (a) (iii) → (d) (iv) → (e) (v) → (c)
54. (i) → (c) (ii) → (a) (iii) → (b)
55. (i) → (c) (ii) → (a) (iii) → (e) (iv) → (b)
56. (i) → (d) (ii) → (a) (iii) → (b) (iv) → (e) (v) → (f)
57. (i) → (b) (ii) → (d) (iii) → (a) (iv) → (e) (v) → (c)
58. (i) → (c) (ii) → (d) (iii) → (b) (iv) → (a)

V. Assertion and Reason Type

59. (i) 60. (ii) 61. (iii) 62. (i) 63. (ii)

VI. Long Answer Type

64. A = Cu B = Cu(NO3)2 C = [Cu(NH3)4] D = CO2
E = CaCO3 F = Cu2[Fe(CN)6] G = Ca(HCO3)2
CuCO3 → CuO + CO2

🙂

41a CuO

🙂

67. Hint : (i) As the size decreases covalent character increases. Therefore
La2O3 is more ionic and Lu2O3 is more covalent.

(ii) As the size decreases from La to Lu, stability of oxosalts also decreases.

(iii) Stability of complexes increases as the size of lanthanoids decreases.
(iv) Radii of 4d and 5d block elements will be almost same.
(v) Acidic character of oxides increases from La to Lu.

68. (a) (i) Cu, because the electronic configuration of Cu is 3d104s1. So second electron needs to be removed from completely filled d-orbital.

(ii) Zn [Hint : As above]
(iii) Zn [Hint : No unpaired electron for metallic bonding]
(b) (i) Fe(CO)5 [Hint : EAN rule]
(ii) MnO3F [Hint : Mn shows +7 oxidation state; d-electrons are not involved in bonding.]

69. Interstitial compounds.
Characteristic properties :
(i) High melting points, higher than those of pure metals.
(ii) Very hard.
(iii) Retain metallic conductivity.
(iv) Chemically inert.

70. (a) Reaction between iodide and persulphate ions is :

🙂

42a Iodine

🙂

MnO2 + KOH + O2 → 2K2MnO2 + 2H2O
MnO2 + 4NaCl + 4H2SO4 → MnCl2 + 2NaHSO4 + 2H2O + Cl2
(D)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Simplified Knowledge Management Classes

Must see https://zookeepersblog.wordpress.com/some-points-which-i-wish-all-my-new-prospective-students-know/
🙂
Do you want to make money working at home ?

see http://skmclasses.weebly.com/jobs.html

search for videos in http://www.skmclasses.weebly.com

you will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.

http://skmclasses.wordpress.com/accolades-and-appreciations-received-from-students-and-parents/

https://skmclasses.wordpress.com/books-for-you-physics-maths-chemistry-free-download-from-skm-classes-south-bangalore/

https://skmclasses.wordpress.com/home-tuition-for-iit-jee-at-koromangala-hsr-layout-lt-south-city-brigade-south-bangalore/

http://skmclasses.weebly.com/

http://skmclasses.wordpress.com/differential-equation-for-iit-jee-cbse-from-skm-classes-south-bangalore/

http://skmclasses4olympiads.wordpress.com/

https://skmclasses.wordpress.com/cbse-standard-11-chemistry-chapter-1-some-basic-concepts-of-chemistry-ncert/

http://iitjee.wix.com/skmclasses

http://skmclasses.wordpress.com/differentiation-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

http://skmclasses4olympiads.wordpress.com/

https://skmclasses.wordpress.com/cbse-standard-12-chemistry-polymers-chapter-15-ncert/

http://skmclasses.weebly.com/

http://skmclasses.wordpress.com/binomial-theorem-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

http://skmclasses4olympiads.wordpress.com/

https://skmclasses.wordpress.com/differential-equation-for-iit-jee-cbse-from-skm-classes-south-bangalore/

http://iitjee.wix.com/skmclasses

http://skmclasses.wordpress.com/center-of-mass-problems-for-iit-jee-cbse-from-skm-classes-south-bangalore/

http://skmclasses.weebly.com/

https://skmclasses.wordpress.com/complex-number-for-iit-jee-cbse-from-skm-classes-south-bangalore/

http://skmclasses.wordpress.com/complex-number-for-iit-jee-cbse-from-skm-classes-south-bangalore/

http://iitjee.wix.com/skmclasses

https://skmclasses.wordpress.com/electromagnetic-induction-for-iit-jee-cbse-from-skm-classes-south-bangalore/

http://skmclasses.weebly.com/

http://skmclasses.wordpress.com/circular-motion-problems-for-iit-jee-cbse-from-skm-classes/

http://skmclasses4olympiads.wordpress.com/

http://skmclasses.wordpress.com/combinatorics-permutation-combination-for-iit-jee-cbse/

http://skmclasses.weebly.com/

xxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxx

The following Videos are available for you ( As of Now ). These explain tricky Physics and Mathematics Numericals.

Eventually I will try to give Videos for full course here for you.

These covers PU ( Pre University courses, school / college ) courses, IIT JEE, AIEEE ( All India Engineering Entrance Examination ) , CET ( Combined Engineering Test ), AIPMT ( All India Pre Medical Test ), ISc ( Intermediate Science / Indian School Certificate Exam ), CBSE ( Central Board Secondary Exam ), Roorkey Joint Entrance Test Questions ( Discontinued since 2002 ), APhO ( Asian Physics Olympiad ), IPhO ( International Physics Olympiad ), IMO ( International Mathematics Olympiad ) , NSEP ( National Standard Exam in Physics ), RMO ( Regional Math Olympiad , India ), INMO ( Indian National Maths Olympiad ), Irodov Solutions, Prof. H C Verma ( Concepts of Physics ) Solutions etc.

( You can see the history of Indian Participation in various Olympiads at ->
https://zookeepersblog.wordpress.com/indian-participation-in-ipho-icho-ibo-and-astronomy-olympiad/ )

[ In each of these videos there is at-least 1 or more errors. Please tell me about those ]

search for videos in http://www.skmclasses.weebly.com
You should get to see all the Uploaded videos. Though we have many more study videos.

Thanks and Regards
Zookeeper ;-D Subhashish Chattopadhyay

[ I suggest you see the videos starting with 1- first then starting with 2- ….. in that sequence. ]

[ Tell your friends about this link if you liked the videos ]

In case of doubts or suggestions, Please send me email at mokshya@gmail.com

search for videos in http://www.skmclasses.weebly.com

Answers to -> Frequently Asked Questions ( FAQ ) [ commonly asked intelligent Questions 🙂 ]

1 ) How do I prepare for IIT ?

Ans : – See the videos made by me ( search for videos in http://www.skmclasses.weebly.com
Though we have many more which have not been uploaded ). While watching the videos, take notes and try to solve the problems yourself by pausing the video. Tell me if any calculation is wrong. See the videos with 1- first then 2- and so on. Write to IAPT Kothrud, Pune office to buy ( 150 Rs approx ) the book with previous papers of NSEP ( National Standard Exam in Physics – The 1st level ), INPhO ( Indian National Physics Olympiad – 2nd level ). Prepare with these and see how much you are scoring. You can guess your ALL INDIA rank easily from NSEP, and INPhO rank. Since 1998 the IIT JEE toppers have been mostly representing India in IPhO.

2 ) Which codec and Player do I use to see the videos ?

Ans : – You can use GOM Player, or VLC Player. You have to have good speakers with filters or good earphones with filters. We have checked mostly it is OK with these. ( If you are depending only on your embedded speakers of computer /screen / keyboard then there may be extra distortions. As these speakers are often not of good Quality. Also install latest KL Codecs ) In any case reduce the volume see the board, imagine sitting in the last bench and solving the problems of your own. See if your solution differs anywhere with the scribbles on the board.

3 ) Why are you giving these ( high Quality ) lecture for free ?

Ans : Well there are lot of good things free in this world. Linux, My-SQL, Open-Office ….. Go to sourceforge and get thousands of high quality software free along with source code. Yes all officially free …. Why do you think Richard Stallman, Zimmerman, ….. etc are considered Guru philosophers ? In Punjab and Gurudwaras worldwide there are so many Langars where you get better food than Restaurants. ….. why ? Why do you have Dharmasalas and subsidized rest rooms near hospitals / Famous Temples / various places ? in Iftar party anyone can eat for free …. why ?

I am teaching since 1989 I have observed most students can do much better if they have the self motivation to solve and practice. Cheap books are available in second hand bookstalls, where you get thousands of Numericals to solve ….. but most students will like to blow their time going and coming for tuition, travel time …. TV for hours and hours watching cricket / Tennis games, playing computer games …. My free lectures are not going to make much difference in spending of unnecessary money for coaching ….. I know very well , how much people enjoy …. ! spending unnecessarily !!

Do you know that there are NO poor / needy students in Bangalore.

Sometime back I had tried to teach for IIT JEE FREE. Discussed with a few NGOs and social service guys. Arranged rooms but got only 1 student. We had informed many people in many ways to inform students …. We did not get students who are ready to learn for free. So I am sure these lectures are NOT FREE. If anyone learns from these, s/he changes and that’s the gain / benefit. This change ( due to learning ) is very costly …. Most do not want to learn ………..

search for videos in http://www.skmclasses.weebly.com
You will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.

🙂

4 ) How can I get all your lectures ?

Ans : – Apart from my lectures there are approx 700 GB of PCM ( Phy, Chem, Math ) lectures. It takes approx 3 years of continuous download from scattered sources. I have ( 20,000 )Thousands of these. You can take ALL of them from me in an external 1 TB hard disk, instead of spending so much money and time again for downloading. These cover ( by Various Professors ) everything of Chemistry, Physics, Maths… Lot of this is from outside India … as foreigners have much wider heart than Indians ( as most of GNU / open source software have been developed by Non-Indians ). I observed the gaps in these videos, and thus I am solving IIT, APhO, Roorkey, IPhO Numericals. Videos made by me along with these videos gives a complete preparation.

Send me a mail at mokshya@gmail.com to contact me.

search for videos in http://www.skmclasses.weebly.com
You will get most videos. I say most because I do not upload all videos that I make. I have many more videos which are not in the net.

🙂

5 ) How do you get benefited out of this ?

Ans :- If anyone learns we all will have better people in this world. I will have better “ YOU “.
🙂

6 ) Why do you call yourself a Zookeeper ?

Ans :- This is very nicely explained at https://zookeepersblog.wordpress.com/z00keeper-why-do-i-call-myself-a-zoookeeper/

🙂

7 ) Where do you stay ?

Ans :- Presently I am in Bangalore.

🙂

8 ) If I need videos in a few topics can you make them for me ?

Ans :- We actively answers doubts at doubtpoint.
see http://skmclasses.weebly.com/doubtpoint.html
In case you appreciate our time and efforts involved in answering complicated Questions, then get Quality answers at doubtpoint.

🙂

9 ) Why did you write an article saying there are No Poor students ?

Ans :- There are lots of NGOs and others working for rural / poor children education at lower classes. While very less effort is on for std 9 till 12. Also see the answer in question number ( 3 ) above. In more than 2 decades of teaching I never met a Poor child who was seriously interested in ( higher ) studies. As I have a mind / thinking of a ” Physicist “, I go by ” Experimental Observation “.

It is not about what is being said about poor in media / TV etc, or ” what it should be ” ( ? ) …. It is about what I see happening. Also to add ( confuse ? you more )…. You must be knowing that in several states over many years now girl students have better ( by marks as well as by pass percentage ) result in std 10 / Board Exams….. well but NEVER a girl student came FIRST in IIT JEE … why ? [ The best rank by a Girl student is mostly in 2 digits, very rarely in single digit ] ????? So ????

🙂

10 ) How much do I have to study to make it to IIT ?

Ans :- My experience of Teaching for IIT JEE since 1989, tells me, Total 200 hours per subject ( PCM ) is sufficient. If you see my Maths and Physics videos, each subject is more than 200 hours. So if someone sees all the videos diligently, takes notes and remembers, …… Done.

🙂

11 ) What is EAMCET ?

Ans :- Engineering Agriculture and Medicine Common Entrance Test is conducted by JNT University Hyderabad on behalf of APSCHE. This examination is the gateway for entry into various professional courses offered in Government/Private Colleges in Andhra Pradesh.

12 ) In your videos are you covering other Exams apart from IIT ?

Ans : – Yes. See many videos made by solving problems of MPPET, Rajasthan / J&K CET, UPSEAT ( UPES Engineering Aptitude Test ), MHCET, BCECE ( Bihar Combined Entrance Competitive Examination Board ), WB JEE etc

🙂

13 ) What is SCRA ?

Ans : – Special Class Railway Apprentice (SCRA) exam is conducted by Union Public Service Commission (UPSC) board, for about 10 seats.That translates into an astonishing ratio of 1 selection per 10,000 applicants. The SCRA scheme was started in 1927 by the British, to select a handful of most intelligent Indians to assist them in their Railway Operations, after training at their Railway’s largest workshop, i.e. Jamalpur Workshop, and for one year in United Kingdom. The selected candidates were required to appear in the Mechanical Engineering Degree Examination held by Engineering Council (London).

Thanks for your time. To become my friend in google+ ( search me as mokshya@gmail.com and send friend request )

Read http://edge.org/responses/what-scientific-concept-would-improve-everybodys-cognitive-toolkit
🙂
The following video is a must see for full CO2 cycle, plates of Earth, Geological activities, stability of weather
http://www.youtube.com/watch?v=oIuoNtRBG4w

🙂
Article in Nature says CO2 increase is good for the trees
http://thegwpf.org/science-news/6086-co2-is-greening-the-planet-savannahs-soon-to-be-covered-by-forests.html
🙂
http://climaterealists.com/index.php?id=9752

BBC documentary Crescent and Cross shows the 1000 years of fight between Christians and Muslims. Millions have been killed in the name of Religion. To decided whose GOD is better, and which GOD to follow. The fight continues.

Summary of Women
http://www.youtube.com/watch?v=yIpmML49hMU
🙂
The Virus of Faith
http://www.youtube.com/watch?v=scarHc8RA0g

🙂
The God delusion
http://www.youtube.com/watch?v=LVr9bJ8Sctk

🙂
cassiopeia facts about evolution
http://www.youtube.com/watch?v=K7tQIB4UdiY

Intermediate Fossil records shown and explained nicely Fossils, Genes, and Embryos http://www.youtube.com/watch?v=fdpMrE7BdHQ

The Rise Of Narcissism In Women
http://www.youtube.com/watch?v=wZHKCbHGlS0

🙂
13 type of women whom you should never court
http://timesofindia.indiatimes.com/life-style/relationships/man-woman/13-Women-you-should-never-court/articleshow/14637014.cms

🙂
Media teaching Misandry in India http://www.youtube.com/watch?v=-M2txSbOPIo

Summary of problems with women
http://problemwithwomentoday.blogspot.in/2009/12/problem-with-women-today-what-in-hell.html

🙂
Eyeopener men ? women only exists
http://www.youtube.com/watch?v=6ZAuqkqxk9A

🙂

Most unfortunate for men
http://www.youtube.com/watch?v=73fGqUwmOPg

🙂
Each of you is an Activist in some way or other. You are trying to propagate those thoughts, ideas that you feel concerned / excited about.

Did you analyze your effectiveness ?

http://www.youtube.com/watch?v=61qn7S9NCOs
Culturomics can help you

😀

see how biased women are. Experimental proof. Women are happy when they see another woman is beating a man ( see how women misbehave with men )

🙂
http://www.youtube.com/watch?v=LlFAd4YdQks

see detailed statistics at
http://www.youtube.com/watch?v=5lHmCN3MBMI

An eye opener in Misandry
http://www.youtube.com/watch?v=YiTaDS_X6CU

My sincere advice would be to be EXTREMELY careful ( and preferably away ) of girls. As girls age; statistically certain behavior in them has been observed. Most Male can NOT manage those behaviors… Domestic violence, divorce etc are rising very fast. Almost in all cases boys / males are HUGE loosers. Be extremely choosy ( and think from several angles ) before even talking to a girl.
🙂
https://zookeepersblog.wordpress.com/save-the-male/

🙂

How women manipulate men
http://www.angryharry.com/esWomenManipulateMen.htm

Gender Biased Laws in India
https://zookeepersblog.wordpress.com/biased-laws/

🙂

Violence against Men
http://www.youtube.com/watch?v=MLS2E-rRynE

🙂

Only men are victimised
http://www.youtube.com/watch?v=4JA4EPRbWhQ

Men are BETTER than women
http://www.menarebetterthanwomen.com/
🙂

see http://www.youtube.com/watch?&v=T0xoKiH8JJM#!
🙂

Male Psychology http://www.youtube.com/watch?v=uwxgavf2xWE

Women are more violent than men
http://www.independent.co.uk/news/uk/home-news/women-are-more-violent-says-study-622388.html

🙂

In the year 2010, 168 men ended their lives everyday ( on average ). More husbands committed suicide than wives.
🙂

http://www.rediff.com/news/report/ncrb-stats-show-more-married-men-committing-suicide/20111028.htm

It is EXTREMELY unfortunate that media projects men as fools, women as superiors, Husbands as servants, and replaceable morons. In ad after ad worldwide from so many companies, similar msg to disintegrate the world is being bombarded. It is highly unacceptable misandry

🙂
http://www.youtube.com/watch?v=oq14WHkFq30

It is NOT at all funny that media shows violence against MEN. Some advertisers are trying to create a new ” Socially acceptable culture ” of slapping Men ( by modern city women ). We ( all men ) take objection to these advertisements.
We oppose this Misandry bad culture. Please share to increase awareness against Men bashing

🙂
http://www.youtube.com/watch?v=D8ecN2rh0uU

🙂

 

Think what are you doing … why are you doing ?
http://www.youtube.com/watch?v=qp0HIF3SfI4

Every Man must know this …
http://www.youtube.com/watch?v=cIFmQHJEG1M

🙂
Manginas, White Knights, & Other Chivalrous Dogs
http://www.youtube.com/watch?v=oXQDtBT70B8

!
!
: ****__********__***
…….. (””(`-“’´´-´)””)
……….)…..–…….–….(
………/…..(6…_…6)….\
………\……..(..0..)….;../
……__.`.-._..’=’…_.-.`.__
…./……’###.,.–.,.###.’…\
….\__))####’#’###(((__/
……##### u r #####
……..### SWEET. ###
……/….#########…\
..__\…..\..######/…../
(.(.(____)….`.#.´..(____).).)

 

 

key words

_________________________________________________________________________
IIT, JEE,IITJEE, Home Tuition available small groups students IB International Baccalaureate Programme IGCSE International General Certificate Secondary Education ISc Indian School Certificate ICSE Indian Certificate of Secondary Education CBSE Central Board of Secondary Education The Schools offering IB International Baccalaureate Programme Bangalore International School Geddalahalli Hennur Bagalur Road Kothanur Post Bengaluru India 560 077 Stonehill International School, 1st Floor, Embassy Point #150, Infantry Road Bengaluru 560 001 Stonehill International School 259/333/334/335, Tarahunise Post Jala Hobli, Bengaluru North 562157 Candor International School Begur – Koppa Road, Hullahalli, Off Bannerghatta Road, Near Electronic City, Bangalore – 560105 Greenwood High International School Bengaluru No.8-14, Chickkawadayarapura, Near Heggondahalli, Gunjur Post, Varthur Sarjapur Road, Bangalore-560087 Sarla Birla Academy Bannerghatta, Bangalore, Canadian International School, Yelahanka, Bangalore Indus International School, Billapura Cross, Sarjapur Bangalore IGCSE International General Certificate of Secondary Education ) Schools of Bangalore Greenwood high international school, No.8-14, Chickkawadayarapura Gunjur Post, Varthur Sarjapur Road, Bangalore Oakridge International School, Oakridge International School, Sarjapur Road, Bangalore Edify School Electronic City 105 34th Main 23rd Cross Sector-A Surya Nagar Phase-2, Anekal-Chandapura Main Road, Electronic City Bangalore Orchids The International School Jalahalli Nagarbavi Mysore Road Sarjapur Road BTM, Bangalore Trio World School, #3/5, Kodigehalli Main Road Sahakar Nagar, Bangalore Ekya School, No.16, 6TH B Main J P Nagar 3RD Phase, Bangalore Vibgyor High school, 58/1, Thubarahallli Whitefield Road, Bangalore Vidyashilp Academy, 42/3, Shivanahalli Yelahanka, Bangalore, PRIMUS Public School, Post Box No. 21, Chikanayakanahalli Village, Off. Sarjapur Road Bangalore Jain International Residential School Jakkasandra Post, Kanakapura Taluk Bangalore Ryan International School, Kundanahalli, M. H. Colony, AECS Layout, Kundalahalli Gate,Bhd Hindustan Lever Ltd, Marathahalli Colony, Bangalore Ebenezer International School, Singena Agrahara Road, Via Hosur Road / A.P.M.C. Yard, Bangalore Mallya Aditi International School, Yelahanka Bangalore India International school 26/1,Chikkabellandur, Carmel Ram Post, Bangalore Ryan International School, Yelahanka, Vederapura Village, Gentiganahalli Road, Training Centre, Yelahanka Bangalore Indus International School, Billapura Cross Sarjapur, Bangalore The International School Bangalore (TISB), NAFL Valley Whitefield – Sarjapur Road, Bangalore Treamis World School, Hulimangala Post Bangalore Ryan International School, Bannerghatta road, Opp. Confident Cascade Bannergatta Main Road Bangalore International School, Geddalahalli Hennur Bagalur Road, Kothanur Post Bangalore Sarla Birla Academy Bannerghatta Jigni Road Bangalore Inventure Academy Whitefield – Sarjapur Road Bangalore Prakriya, # 70, Chikkanayakanahalli Road off Doddakannelli Sarjapur Road, Bangalore Buddhi School, 57, 3rd Main, 4th Cross RMV 2nd Stage, H.I.G Colony, Bangalore B.G.S. International Residential School Nithyananda Nagar, Kumbalagudu, Gollahalli Kengeri, Bangalore Solutions, India, IPhO, APhO, IMO, RMO, INMO, through, lectures, problems numericals Zookeeper, Subhashish, Chattopadhyay, Projectile, Latent, Heat Thermodynamics std 11 12 ISc Calculus BE BTech Differentiation Integration Mechanics Surface Tension Viscosity Accelerating Frame velocity wedge mass pulley Moment Inertia Roorkey Joint Entrance Exam CET AIEEE Irodov HCV Verma South Bangalore Intermediate Algebra Trigonometry Sexy Free Coaching study material preparation Olympiad Friction sin Modelling cos Potential tan cot Gravitation Electrostatics sec Field cosec Ellipse Parabola Hyperbola inverse string Tuition Kinetic Theory Gases Isothermal Adiabatic Isochoric Isobaric Processes Root Mean Square Differential Equation Soomrit Specific Cp Cv PV Diagram Bending Stress Strain Geostationary Satellite Entropy Coefficient Linear Expansion Alpha Beta Gamma Pendulum Conductivity Latent ice water Hydrometer Glass tube series Parallel travelling standing wave Sound Radiation stefan Boltzmann law Newton cooling cylinder Harmonic Overtone Resonance Sonometer Kunds Beat Frequency vibration tuning Fork Swimmer Young Bulk Modulus welded chamber not similar dissimilar MIT Caltech Yale pipe Magnetic Tesla Lenz LvB Vijaya Bank Enclave Apartments Bannerghatta Road Behind IIM Jayanagar J-P-Nagar Buoyant Buoyancy Rho efflux Bernoullis rare Poiseuilles Torricellis critical Terminal Reynolds Poise coalescing Laplace Ventury Hoop orifice Siphon Foucault stretched compression ball scale constant length shear poisson Ratio clock loosing time tvanausdal1 vkiledj Density Partial Pressure Humidity Leak SmartlearnwebTV Space Puncture Photon RC RLC LR Circuit Electrical Capacitor Inductance Linked Flux Wheatstone Bridge Freelanceteach Troutons Rule Van Arkel Method Overview Metallurgy Roasting Calcination Froth Floatation Purification Projected Area PET Kerala MPPET Delta Star conversion Internal Resistance Battery Trick Questions Infinite Ladder Quadratic Cubic Quartic Quintic Orissa NSEP ckt eqn mesh Folding Lenzs J&K Karnataka RMS instantaneous BCECE Maharastra MHCET RPET stepup stepdown transformer Bilekahalli UPSEAT shunt galvanometer susceptibility oscillating magnetometer pole strength Bihar Rajasthan Uttarpradesh Punjab Hariana TN Tamilnadu Andhra WB west Bengal Vacuum Diode Triode Rectifier Truth Table Thermionic emission, Radioactivity Half Life Langmiur, Child Law FCC BCC Cube Optics Lens Mirror Focus Focal Concave Convex Lux Phot Lumen Double slit Complex Integral coordinate Geometry compounds, Biochemistry, Plastic, Organic Chemistry Physical Analytical Inorganic Metallurgy, Biotechnology, Polymer Science, Rubber Technology Geology, Pharma, Veterinary Science,Food Technology, Cryogenics, Ceramics acid species IITJEE SKMClasses.weebly.com proton donor activation energy minimum energy IITJEE SKMClasses.weebly.com reaction breaking bonds addition polymer very long molecular chain formed repeated addition reactions many unsaturated alkene molecules monomers addition polymerisation process unsaturated alkene molecules monomers add growing polymer chain one timeIITJEE SKMClasses.weebly.com long saturated molecular chain addition polymer addition reaction reaction IITJEE SKMClasses.weebly.com reactant added IITJEE SKMClasses.weebly.com unsaturated molecule saturated molecule adsorption process IITJEE SKMClasses.weebly.com occurs gas, liquid solute surface solid rarely liquid alicyclic hydrocarbon hydrocarbon IITJEE SKMClasses.weebly.com carbon atoms joined together ring structure aliphatic hydrocarbon hydrocarbon IITJEE SKMClasses.weebly.com carbon atoms joined together straight branched chains alkali type base IITJEE SKMClasses.weebly.com dissolves water forming hydroxide ions OH (aq) ions alkanes homologous series IITJEE SKMClasses.weebly.com general formula C alkyl group alkane IITJEE SKMClasses.weebly.com hydrogen atom removed CH alkyl groups IITJEE SKMClasses.weebly.com IITJEE skmclasses.weebly.com ‘R’ amount substance quantity whose unit mole Chemists amount substance IITJEE skmclasses.weebly.com IITJEE counting atoms anhydrous substance IITJEE SKMClasses.weebly.com contains water molecules anion negatively charged ion atom economy atomic orbital region within atom hold two electrons IITJEE SKMClasses.weebly.com opposite spins atomic proton number number protons nucleus atom 100 products masses molecular sum product desired mass molecular economy atom Chemistry average bond enthalpy average enthalpy change IITJEE SKMClasses.weebly.com place IITJEE SKMClasses.weebly.com breaking homolytic fission 1 molIITJEE SKMClasses.weebly.com type bond molecules gaseous species Avogadro constant,isotope number atoms mole carbon base species IITJEE SKMClasses.weebly.com proton acceptor biodegradable material substance IITJEE SKMClasses.weebly.com broken IITJEE SKMClasses.weebly.com naturally environment living organisms Boltzmann distribution distribution energies molecules particular temperature IITJEE skmclasses.weebly.com graph bond enthalpy enthalpy change IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com breaking homolytic fission 1 mol bond molecules gaseous species carbanion organic ion IITJEE SKMClasses.weebly.com carbon atom hIITJEE skmclasses.weebly.com negative charge carbocation organic ion IITJEE SKMClasses.weebly.com carbon atom hIITJEE skmclasses.weebly.com positive charge catalyst substance IITJEE SKMClasses.weebly.com increases rate chemical reaction process cation positively charged ion cis trans isomerism special type isomerism IITJEE SKMClasses.weebly.com non hydrogen group skmclasses.weebly.com hydrogen atom C C=C double bond cis isomer ( Z isomer) IITJEE skmclasses.weebly.com H atoms on IITJEE SKMClasses.weebly.com carbon same side trans isomer E isomer H atoms carbon different bond compound substance formed IITJEE SKMClasses.weebly.com two IITJEE SKMClasses.weebly.com chemically bonded elements fixed ratio, usually chemical formula concentration amount solute mol IITJEE SKMClasses.weebly.com 1 dm 3 1000 cm solution coordinate bond shared pair electrons provided one bonding atoms called dative covalent bond covalent bond bond formed shared pair electrons cracking breaking long chained saturated hydrocarbonsIITJEE SKMClasses.weebly.com mixture shorter chained alkanesalkenes curly arrow symbol IITJEE SKMClasses.weebly.com reaction mechanisms IITJEE SKMClasses.weebly.com show movement electron Coaching ICWA Coaching CFA Coaching CFP Coaching CMAT Coaching School Tuitions CBSE School Tuitions Home Tuitions 9th STD Tuitions PUC Coaching 10th Std Tuitions College Tuitions Maths Tuitions Engineering Tuitions Accounts & Finance Tuitions MBA & BBA Coaching Microbiology & Biotech Tuitions Study Abroad GRE & SAT Coaching GMAT Coaching IELTS/TOEFL Coaching PTE Coaching proteins protonation pyridines pyrroles quinones quinolines radical reaction radicals rearrangement receptors reduction regioselectivity retro reaction rhodium ring closure ring contraction ring expansion ring opening ruthenium samarium scandium Schiff bases selenium self-assembly silicon sodium solid-phase synthesis solvent effects spectroscopy sphingolipids spiro compounds stereoselective synthesis stereoselectivity steric hindrance steroids Stille reaction substituent effects sulfates sulfonamides sulfones sulfoxides sulfur supported catalysis supramolecular tandem reaction tautomerism terpenoids thioacetals thiols tin titanium total synthesis transesterification transition metals transition states tungsten Umpolung vinylidene complexes vitamins Wacker reaction Wittig reaction ylides zeolites zinc BRST Quantization Effective field theories Field Theories Higher Dimensions Field Theories Lower Dimensions Large Extra Dimensions Lattice Quantum Field Theory Nonperturbative Effects Renormalization Group Renormalization Regularization skmclasses.weebly.com Renormalons Sigma Models Solitons Monopoles skmclasses.weebly.com Instantons Supersymmetric gauge theory Topological Field Theories 1/N Expansion Anyons Chern-Simons Theories Confinement Duality Gauge Field Theories Lattice Gauge Field Theories Scattering Amplitudes Spontaneous Symmetry Breaking Strong Coupling Expansion Topological States Matter Wilson ‘t Hooft skmclasses.weebly.comPolyakov loops Anomalies Field skmclasses.weebly.comString Theories BRST Symmetry Conformal skmclasses.weebly.com W Symmetry Discrete skmclasses.weebly.comFinite Symmetries Gauge Symmetry Global Symmetries Higher Spin Symmetry Space-Time Symmetries AdS-CFT Correspondence Black Holes String Theory Bosonic Strings Brane Dynamics Gauge Theories Conformal Field Models String Theory D-branes dS vacua string theory F-Theory Flux compactifications Gauge-gravity correspondence Holography skmclasses.weebly.comcondensed matter physics (AdS CMT) Holography skmclasses.weebly.comquark-gluon plasmas Intersecting branes models Long strings M(atrix) Theories M-Theory p-branes Penrose limit skmclasses.weebly.compp-wave background String Duality String Field Theory String theory skmclasses.weebly.comcosmic string Superstring Vacua Superstrings skmclasses.weebly.comHeterotic Strings Tachyon Condensation Topological Strings 2D Gravity Black Holes Classical Theories Gravity Higher Spin Gravity Lattice Models Gravity Models Quantum Gravity Spacetime Singularities Extended Supersymmetry Supergravity Models Superspaces Supersymmetric Effective Theories Supersymmetry skmclasses.weebly.com Duality Supersymmetry Breaking Differential skmclasses.weebly.comAlgebraic Geometry Integrable Hierarchies Non-Commutative Geometry Quantum Groups Statistical Methods Stochastic Processes Cosmology Theories beyond SM Solar skmclasses.weebly.comAtmospheric Neutrinos Thermal Field Theory Be Ansatz Boundary Quantum Field Theory Exact S-Matrix Quantum Dissipative Systems Random Systems B-Physics Beyond Standard Model Compactification skmclasses.weebly.com String Models CP violation Electromagnetic Processes skmclasses.weebly.com Properties GUT Heavy Quark Higgs Kaon LEP HERA skmclasses.weebly.com SLC Neutrino Physics Quark Masses skmclasses.weebly.comSM Parameters Rare Decays Standard Model Supersymmetric Standard Model Technicolor skmclasses.weebly.com Composite Models Chiral Lagrangians Deep Inelastic Scattering Higher Twist Effects Lattice QCD Parton Model Phase Diagram QCD Phenomenological Models QCD Quark-Gluon Plasma Resummation Sum Rules Aim Global Education Koramangala Computer Networking Training Cloud Computing Training JBOSS Training Juniper Certification Training L2 & L3 Protocol Training MCTS Training Engineering design Training CAD & CAM Training MATLAB Training PLC Training SCADA Training VLSI Design Multimedia & Design Training 2D Animation Training 3D Animation Training 4D Animation Training CorelDRAW Training VFX Training Web Technologies Training ASP.Net Training JQuery pair breaking formation covalent bond dative covalent shared pair electrons IITJEE SKMClasses.weebly.com hIITJEE skmclasses.weebly.com been provided one bonding atoms only IITJEE SKMClasses.weebly.com called coordinate bond dehydration elimination reaction IITJEE SKMClasses.weebly.com water removed saturated molecule IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com unsaturated molecule delocalised Electrons IITJEE SKMClasses.weebly.com shared IITJEE SKMClasses.weebly.com two atoms displacement reaction reaction IITJEE SKMClasses.weebly.com reactive element displaces less reactive element IITJEE SKMClasses.weebly.com aqueous solution latter’s ions displayed formula showing relative positioning atoms molecule skmclasses.weebly.com bonds IITJEE SKMClasses.weebly.com disproportionation oxidation skmclasses.weebly.com reduction element redox reaction dynamic equilibrium equilibrium IITJEE SKMClasses.weebly.com exists closed system IITJEE SKMClasses.weebly.com rate forward reaction equal IITJEE SKMClasses.weebly.com rate reverse reaction E/Z isomerism type stereoisomerism IITJEE SKMClasses.weebly.com different groups attached IITJEE SKMClasses.weebly.com carbon C=C double bond arranged differently space restricted rotation C=C bond electron configuration arrangement electrons IITJEE SKMClasses.weebly.com atom electronegativity measure attraction bonded atom skmclasses.weebly.com pair electrons covalent bond electron shielding repulsion IITJEE SKMClasses.weebly.com electrons different inner shells Shielding reduces net attractive force IITJEE SKMClasses.weebly.com positive nucleus outer shell electrons electrophile atom group atoms IITJEE SKMClasses.weebly.com attracted IITJEE SKMClasses.weebly.com electron rich centre atom IITJEE SKMClasses.weebly.com accepts pair electrons covalent bond electrophilic addition type addition reaction IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com electrophile attracted electron rich centre atom accepts pair electrons IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com new covalent bond elimination reaction removal molecule IITJEE SKMClasses.weebly.com saturated molecule IITJEE SKMClasses.weebly.com unsaturated molecule empirical formula simplest whole number ratio atoms IITJEE SKMClasses.weebly.com element present compound endothermic reaction reaction IITJEE SKMClasses.weebly.com enthalpy products greater enthalpy reactants resulting heat being taken surroundings enthalpy heat content IITJEE SKMClasses.weebly.com stored chemical system standard enthalpy change combustion enthalpy change IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com one mole substance reacts completely IITJEE SKMClasses.weebly.com oxygen under standard conditions reactants skmclasses.weebly.com products being IITJEE SKMClasses.weebly.com standard states (standard) enthalpy change formation enthalpy change IITJEE SKMClasses.weebly.com one mole compound formed IITJEE SKMClasses.weebly.com constituent elements IITJEE SKMClasses.weebly.com standard states under standard conditions (standard) enthalpy change reaction enthalpy change IITJEE SKMClasses.weebly.com accompanies reaction molar quantities expressed chemical equation under standard conditions reactants skmclasses.weebly.com products being IITJEE SKMClasses.weebly.com standard states enthalpy cycle diagram showing alternative routes IITJEE SKMClasses.weebly.com reactants products IITJEE SKMClasses.weebly.com allows indirect determination IITJEE SKMClasses.weebly.com enthalpy change IITJEE SKMClasses.weebly.com other known enthalpy changes using Hess’ law enthalpy profile diagram skmclasses.weebly.com reaction IITJEE SKMClasses.weebly.com compare enthalpy reactants IITJEE SKMClasses.weebly.com enthalpy products esterification reaction IITJEE SKMClasses.weebly.com alcohol IITJEE SKMClasses.weebly.com carboxylic acid IITJEE SKMClasses.weebly.com produce ester skmclasses.weebly.com water exothermic reaction IITJEE SKMClasses.weebly.com enthalpy products smaller enthalpy reactants, resulting heat loss IITJEE SKMClasses.weebly.com surroundings fractional distillation separation components liquid mixture skmclassesfractions IITJEE SKMClasses.weebly.com differ boiling point skmclasses.weebly.com hence chemical composition IITJEE SKMClasses.weebly.com distillation typically using fractionating column fragmentation process mass spectrometry IITJEE SKMClasses.weebly.com causes positive ion split skmclasses pieces one positive fragment ion functional group part organic molecule responsible skmclasses.weebly.com chemical reactions general formula simplest algebraic formula member homologous series. skmclasses.weebly.com example general formula alkanes giant covalent lattice dimensional structure atoms, bonded together strong covalent bonds giant ionic lattice three dimensional structure oppositely charged ions, bonded together strong ionic bonds giant metallic lattice three dimensional structure positive ions skmclasses.weebly.com delocalised electrons, bonded together strong metallic bonds greenhouse effect process IITJEE SKMClasses.weebly.com absorption subsequent emission infrared radiation atmospheric gases warms lower atmosphere planet’s surface group vertical column Periodic Table Elements group IITJEE SKMClasses.weebly.com similar chemical properties skmclasses.weebly.com atoms skmclasses.weebly.comnumber outer shell electrons Hess law reaction IITJEE SKMClasses.weebly.com one route skmclasses.weebly.com initial final conditions IITJEE SKMClasses.weebly.com skmclasses.weebly.com total enthalpy change skmclasses.weebly.com skmclasses.weebly.com route heterogeneous catalysis reaction IITJEE SKMClasses.weebly.com catalyst IITJEE skmclasses.weebly.com different physical state reactants; frequently, reactants IITJEE SKMClasses.weebly.com gases whilst catalyst solid heterolytic fission breaking covalent bond IITJEE SKMClasses.weebly.com both bonded electrons going IITJEE SKMClasses.weebly.com one atoms, forming cation (+ ion) skmclasses.weebly.com IITJEE SKMClasses.weebly.com anion ion homogeneous catalysis reaction catalyst skmclasses.weebly.com reactants physical state, IITJEE SKMClasses.weebly.com frequently aqueous gaseous state homologous series series organic compounds IITJEE SKMClasses.weebly.com skmclasses.weebly.com functional group, IITJEE SKMClasses.weebly.com successive member differing homolytic fission breaking covalent bond IITJEE SKMClasses.weebly.com one bonded electrons going IITJEE SKMClasses.weebly.com atom, forming two radicals hydrated Crystalline skmclasses.weebly.com containing water molecules hydrocarbon compound hydrogen skmclasses.weebly.com carbon hydrogen bond strong dipole attraction IITJEE SKMClasses.weebly.com electron deficient hydrogen atom (O H on different molecule hydrolysis reaction IITJEE SKMClasses.weebly.com water aqueous hydroxide ions IITJEE SKMClasses.weebly.com breaks chemical compound skmclasses two compounds initiation first step radical substitution IITJEE SKMClasses.weebly.com free radicals generated ultraviolet radiation intermolecular force attractive force IITJEE SKMClasses.weebly.com neighbouring molecules Intermolecular forces van der Waals’ forces induced dipole ces permanent dipole forces hydrogen bonds ion positively negatively charge atom covalently bonded group atoms molecular ion ionic bonding electrostatic attraction IITJEE SKMClasses.weebly.com oppositely charged ions first) ionisation energy IITJEE SKMClasses.weebly.com remove one electron IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com ion one mole gaseous 1+ ions IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com one mole gaseous 2+ ions second) ionisation energy IITJEE SKMClasses.weebly.com remove one electron IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com ion one mole gaseous 1+ ions IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com one mole gaseous 2+ ions successive ionisation measure energy IITJEE SKMClasses.weebly.com remove IITJEE SKMClasses.weebly.com electron Chemistry energy second ionisation energy energy IITJEE SKMClasses.weebly.com one electron IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com ion one mole gaseous 1+ ions IITJEE SKMClasses.weebly.com one mole gaseous 2+ ions isotopes Atoms skmclasses.weebly.com element IITJEE SKMClasses.weebly.com different numbers neutrons different masses le Chatelier’s principle system dynamic equilibrium subjected change position equilibrium will shift minimise change limiting reagent substance chemical reaction IITJEE SKMClasses.weebly.com runs out first lone pair outer shell pair electrons IITJEE SKMClasses.weebly.com involved chemical bonding mass nucleon number particles protons aneutrons) nucleus mechanism sequence steps showing path taken electrons reaction metallic bond electrostatic attraction IITJEE SKMClasses.weebly.com positive metal ions adelocalised electrons molar mass substance units molar mass IITJEE SKMClasses.weebly.com molar volume IITJEE SKMClasses.weebly.com mole gas. units molar volume IITJEE SKMClasses.weebly.com dm room temperature skmclasses.weebly.com pressure molar volume approximately 24.0 substance containing IITJEE skmclasses.weebly.com many particles thereIITJEE SKMClasses.weebly.com carbon atoms exactly 12 g carbon isotope molecular formula number atoms IITJEE SKMClasses.weebly.com element molecule molecular ion M positive ion formed mass spectrometry IITJEE SKMClasses.weebly.com molecule loses electron molecule small group atoms held together covalent bonds monomer small molecule IITJEE SKMClasses.weebly.com combines IITJEE SKMClasses.weebly.com monomers polymer nomenclature system naming compounds nucleophile atom group atoms attracted electron deficient centre atom donates pair electrons covalent bond nucleophilic substitution type substitution reaction IITJEE SKMClasses.weebly.com nucleophile attracted electron deficient centre atom, IITJEE SKMClasses.weebly.com donates pair electrons IITJEE SKMClasses.weebly.com new covalent bond oxidation Loss electrons IITJEE SKMClasses.weebly.com increase oxidation number oxidation number measure number electrons IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com atom uses bond IITJEE SKMClasses.weebly.com atoms another element. Oxidation numbers IITJEE SKMClasses.weebly.com derive d rules oxidising agent reagent IITJEE SKMClasses.weebly.com oxidises (takes electrons from) another species percentage yield period horizontal row elements Periodic Table Elements show trends properties across period periodicity regular periodic variation properties elements IITJEE SKMClasses.weebly.com atomic number position Periodic Table permanent dipole small charge difference across bond resulting IITJEE SKMClasses.weebly.com difference electronegativities bonded atoms permanent dipole dipole force attractive force IITJEE SKMClasses.weebly.com permanent dipoles neighbouring polar molecules pi bond (p bond reactive part double bond formed above skmclasses.weebly.com below plane bonded atoms sideways overlap p orbitalspolar covalent bond bond IITJEE SKMClasses.weebly.com permanent dipole polar molecule molecule IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com overall dipole skmclasses account dipoles across bonds polymer long molecular chain built monomer units precipitation reaction formation solid solution during chemical reaction Precipitates IITJEE SKMClasses.weebly.com formed IITJEE SKMClasses.weebly.com two aqueous solutions IITJEE SKMClasses.weebly.com mixed together principal quantum number n number representing relative overall energy orbital IITJEE SKMClasses.weebly.com increases distance nucleus sets orbitals IITJEE SKMClasses.weebly.com value IITJEE skmclasses.weebly.com electron shells energy levels propagation two repeated radical substitution IITJEE SKMClasses.weebly.com build up products chain reaction radical species unpaired electron rate reaction change concentration reactant product redox reaction reaction IITJEE SKMClasses.weebly.com reduction skmclasses.weebly.com oxidation take IITJEE SKMClasses.weebly.com reducing agent reagent IITJEE SKMClasses.weebly.com reduces (adds electron to) species reduction Gain electrons decrease oxidation number yield actual amount mol product theoretical amount mol product Chemistry reflux continual boiling skmclasses.weebly.com condensing reaction mixture ensure IITJEE SKMClasses.weebly.com reaction IITJEE SKMClasses.weebly.com without contents flask boiling dry relative atomic mass weighted mean mass atom element compared one twelfth mass IITJEE SKMClasses.weebly.com atom carbon relative formula mass weighted mean mass formula unit compared IITJEE SKMClasses.weebly.com one twelfth mass atom carbon relative isotopic mass mass atom isotope compared IITJEE SKMClasses.weebly.com one twelfth mass atom carbon relative molecular mass weighted mean mass molecule compared twelfth mass atom carbon 12 repeat unit specific arrangement atom s IITJEE SKMClasses.weebly.com occurs structure over over again. Repeat units IITJEE SKMClasses.weebly.com included brackets outside IITJEE SKMClasses.weebly.com symbol n Salt chemical compound formed IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com acid IITJEE SKMClasses.weebly.com H+ ion acid IITJEE skmclasses.weebly.com been replaced metal ion another positive ion such IITJEE skmclasses.weebly.com ammonium ion, NH saturated hydrocarbon IITJEE SKMClasses.weebly.com single bonds only shell group atomic orbitals IITJEE SKMClasses.weebly.com skmclasses.weebly.com principal quantum number known main energy level simple molecular lattice three dimensional structure molecules, bonded together weak intermolecular forces skeletal formula simplified organic formula, IITJEE SKMClasses.weebly.com hydrogen atoms removed alkyl chains, leaving carbon skeleton skmclasses.weebly.com associated functional groups species particle IITJEE SKMClasses.weebly.com part chemical reaction specific heat capacity, c energy IITJEE SKMClasses.weebly.com raise temperature 1 g substance 1 C spectator ions Ions present part chemical reaction standard conditions pressure 100 kPa 1 atmosphere stated temperature usually 298 K (25 °C), skmclasses.weebly.com concentration 1 mol dm reactions aqueous solutions standard enthalpies enthalpystandard solution solution known concentration Standard solutions normally IITJEE SKMClasses.weebly.com titrations IITJEE SKMClasses.weebly.com determine unknown information another substance Chemistry standard state physical state substance under standard conditions 100 kPa 1 atmosphere) skmclasses.weebly.com 298 K 25 C stereoisomers Compounds skmclasses.weebly.com structural formula IITJEE SKMClasses.weebly.com different arrangement atoms space stoichiometry molar relationship IITJEE SKMClasses.weebly.com relative quantities substances part reaction stratosphere second layer Earth’s atmosphere, containing ‘ozone layer’, about 10 km IITJEE SKMClasses.weebly.com 50 km above Earth’s surface structural formula formula showing minimal detail skmclasses.weebly.com arrangement atoms molecule structural isomers Molecules IITJEE SKMClasses.weebly.com skmclasses.weebly.com molecular formula different structural arrangements atoms subshell group skmclasses.weebly.com type atomic orbitals s, p, d f within shell substitution reaction reaction IITJEE SKMClasses.weebly.com atom group atoms replaced different atom group atoms termination step end radical substitution IITJEE SKMClasses.weebly.com two radicals combine IITJEE SKMClasses.weebly.com molecule thermal decomposition breaking chemical substance IITJEE SKMClasses.weebly.com heat skmclasses least two chemical substances troposphere lowest layer Earth’s atmosphere extending Earth’s surface about 7 km (above poles) about 20 km above tropics unsaturated hydrocarbon hydrocarbon containing carbon carbon multiple bonds van der Waals’ forces Very weak attractive forces IITJEE SKMClasses.weebly.com induced dipoles neighbouring molecules volatility ease IITJEE SKMClasses.weebly.com liquid turns skmclasses gas Volatility increases boiling point decreases water crystallisation Water molecules IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com essential part crystalline structure absolute zero – theoretical condition concerning system at zero Kelvin IITJEE SKMClasses.weebly.com system does IITJEE SKMClasses.weebly.com emit absorb energy (all atoms rest accuracy – how close value IITJEE SKMClasses.weebly.com actual true value IITJEE SKMClasses.weebly.com see precision acid compound that, IITJEE SKMClasses.weebly.com dissolved water pH less 7.0 compound IITJEE SKMClasses.weebly.com donates hydrogen ion acid anhydride compound IITJEE SKMClasses.weebly.com two acyl groups boundIITJEE SKMClasses.weebly.com single oxygen atom acid dissociation constant – IITJEE SKMClasses.weebly.com equilibrium constant skmclasses.weebly.com dissociation weak acid actinides – fifteen chemical elements IITJEE SKMClasses.weebly.com actinium (89) skmclasses.weebly.com lawrencium (103 activated complex – structure IITJEE SKMClasses.weebly.com forms because collisionIITJEE SKMClasses.weebly.com molecules new bondsvIITJEE SKMClasses.weebly.com formed activation energy – minimum energy IITJEE SKMClasses.weebly.com must be inputIITJEE SKMClasses.weebly.com chemical system activity series actual yield addition reaction – within organic chemistry, IITJEE SKMClasses.weebly.com two IITJEE SKMClasses.weebly.com molecules combineIITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com larger aeration mixing air skmclasses liquid solid alkali metals metals Group 1 on periodic table alkaline earth metals – metals Group 2 on periodic table allomer substance IITJEE SKMClasses.weebly.com hIITJEE skmclasses.weebly.comdifferent composition another skmclasses.weebly.comcrystalline structure allotropy elements IITJEE SKMClasses.weebly.com different structures skmclasses.weebly.com therefore different forms IITJEE skmclasses.weebly.com Carbon diamonds, graphite, skmclasses.weebly.com fullerene anion negatively charge ions anode – positive side dry cell battery cell aromaticity – chemical property conjugated rings IITJEE SKMClasses.weebly.com results unusual stability. See IITJEE SKMClasses.weebly.com benzene atom – chemical element IITJEE SKMClasses.weebly.com smallest form, skmclasses.weebly.com made up neutrons skmclasses.weebly.comprotons within nucleus skmclasses.weebly.comelectrons circling nucleus atomic mass unit atomic number number representing IITJEE SKMClasses.weebly.com element IITJEE SKMClasses.weebly.com corresponds IITJEE SKMClasses.weebly.com number protons within nucleus atomic orbital region IITJEE SKMClasses.weebly.com electron atom may be found atomic radius average atomic mass Avogadro’s law Avogadro’s number number particles mole substance ( 6.02×10^23 ) barometer deviceIITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com measure pressure atmosphere base substance IITJEE SKMClasses.weebly.com accepts proton skmclasses.weebly.com high pH; common example sodium hydroxide (NaOH biochemistry chemistry organisms boiling phase transition liquid vaporizing boiling point temperature IITJEE SKMClasses.weebly.com substance startsIITJEE SKMClasses.weebly.com boil boiling-point elevation process IITJEE SKMClasses.weebly.com boiling point elevated adding substance bond – attraction skmclasses.weebly.com repulsion IITJEE SKMClasses.weebly.com atoms skmclasses.weebly.com molecules IITJEE SKMClasses.weebly.com cornerstone Boyle’s law Brønsted-Lowrey acid chemical species IITJEE SKMClasses.weebly.com donates proton Brønsted–Lowry acid–base reaction Brønsted-Lowrey base – chemical species IITJEE SKMClasses.weebly.com accepts proton buffered solution – IITJEE SKMClasses.weebly.com aqueous solution consisting weak acid skmclasses.weebly.comits conjugate base weak base skmclasses.weebly.comits conjugate acid IITJEE SKMClasses.weebly.com resists changes pH IITJEE SKMClasses.weebly.com strong acids basesIITJEE SKMClasses.weebly.com added burette (IITJEE SKMClasses.weebly.com buret glasswareIITJEE SKMClasses.weebly.com dispense specific amounts liquid IITJEE SKMClasses.weebly.com precision necessary titration skmclasses.weebly.com resource dependent reactions example combustion catalyst chemical compoundIITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com change rate IITJEE SKMClasses.weebly.com speed up slow down reaction,IITJEE SKMClasses.weebly.com regenerated at end reaction cation – positively charged ion centrifuge equipmentIITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com separate substances based on density rotating tubes around centred axis cell potential force galvanic cell IITJEE SKMClasses.weebly.com pulls electron through reducing agentIITJEE SKMClasses.weebly.com oxidizing agent chemical Law certain rules IITJEE SKMClasses.weebly.com pertain IITJEE SKMClasses.weebly.com laws nature skmclasses.weebly.comchemistry – examples chemical reaction – change one IITJEE SKMClasses.weebly.com substances skmclassesanother multiple substances colloid mixture evenly dispersed substances such IITJEE skmclasses.weebly.comm milks combustion IITJEE SKMClasses.weebly.com exothermic reaction IITJEE SKMClasses.weebly.com oxidant skmclasses.weebly.comfuel IITJEE SKMClasses.weebly.com heat skmclasses.weebly.comoften light compound – substance IITJEE SKMClasses.weebly.com made up two IITJEE SKMClasses.weebly.com chemically bonded elements condensation phase changeIITJEE SKMClasses.weebly.com gasIITJEE SKMClasses.weebly.com liquid conductor material IITJEE SKMClasses.weebly.com allows electric flow IITJEE SKMClasses.weebly.com freely covalent bond – chemical bond IITJEE SKMClasses.weebly.com involves sharing electrons crystal solid IITJEE SKMClasses.weebly.com packed IITJEE SKMClasses.weebly.com ions, molecules atoms IITJEE SKMClasses.weebly.com orderly fashion cuvette glasswareIITJEE SKMClasses.weebly.com spectroscopic experiments. usually made plastic glass quartz skmclasses.weebly.comshould be IITJEE possible deionization removal ions, skmclasses.weebly.com water’s case mineral ions such IITJEE skmclasses.weebly.comsodium, iron skmclasses.weebly.comcalcium deliquescence substances IITJEE SKMClasses.weebly.com absorb water IITJEE SKMClasses.weebly.com atmosphereIITJEE SKMClasses.weebly.com liquid solutions deposition – settling particles within solution mixture dipole electric magnetic separation charge dipole moment – polarity polar covalent bond dissolution solvation – spread ions monosacharide double bond sharing two pairs electradodes Microcentrifuge Eppendorf tube IITJEE SKMClasses.weebly.com Coomassie Blue solution earth metal – see alkaline earth metal electrolyte solution IITJEE SKMClasses.weebly.com conducts certain amount current skmclasses.weebly.com split categorically IITJEE skmclasses.weebly.com weak skmclasses.weebly.comstrong electrolytes electrochemical cell using chemical reaction’s current electromotive force made electromagnetic radiation type wave IITJEE SKMClasses.weebly.com through vacuums IITJEE skmclasses.weebly.comwell IITJEE skmclasses.weebly.commaterial skmclasses.weebly.comclassified IITJEE skmclasses.weebly.com self-propagating wave electromagnetism fields IITJEE SKMClasses.weebly.com electric charge skmclasses.weebly.comelectric properties IITJEE SKMClasses.weebly.com change way IITJEE SKMClasses.weebly.com particles move skmclasses.weebly.com interact electromotive force device IITJEE SKMClasses.weebly.com gains energy IITJEE skmclasses.weebly.comelectric charges pass through electron – subatomic particle IITJEE SKMClasses.weebly.com net charge IITJEE SKMClasses.weebly.com negative electron shells – IITJEE SKMClasses.weebly.com orbital around atom’s nucleus fixed number electrons usually two eight electric charge measured property (coulombs) IITJEE SKMClasses.weebly.com determine electromagnetic interaction element IITJEE SKMClasses.weebly.com atom IITJEE SKMClasses.weebly.com defined IITJEE SKMClasses.weebly.com atomic number energy – system’s abilityIITJEE SKMClasses.weebly.com do work enthalpy – measure total energy thermodynamic system (usually symbolized IITJEE skmclasses.weebly.comH entropy – amount energy IITJEE SKMClasses.weebly.com available skmclasses.weebly.com work closed thermodynamic system usually symbolized IITJEE skmclasses.weebly.com S enzyme – protein IITJEE SKMClasses.weebly.com speeds up catalyses reaction Empirical Formula – IITJEE SKMClasses.weebly.com called simplest formula gives simplest whole -number ratio atoms IITJEE SKMClasses.weebly.com element present compound eppendorf tube – generalized skmclasses.weebly.comtrademarked term skmclasses.weebly.com type tube; see microcentrifuge freezing – phase transitionIITJEE SKMClasses.weebly.com liquidIITJEE SKMClasses.weebly.com solid Faraday constant unit electrical charge widelyIITJEE SKMClasses.weebly.com electrochemistry skmclasses.weebly.comequalIITJEE SKMClasses.weebly.com ~ 96,500 coulombs represents 1 mol electrons, Avogadro number electrons: 6.022 × 1023 electrons. F = 96 485.339 9(24) C/mol Faraday’s law electrolysis two part law IITJEE SKMClasses.weebly.com Michael Faraday published about electrolysis mass substance altered at IITJEE SKMClasses.weebly.com electrode during electrolysis directly proportionalIITJEE SKMClasses.weebly.com quantity electricity transferred at IITJEE SKMClasses.weebly.com electrode mass IITJEE SKMClasses.weebly.com elemental material altered at IITJEE SKMClasses.weebly.com electrode directly proportionalIITJEE SKMClasses.weebly.com element’s equivalent weight frequency number cyclesIITJEE SKMClasses.weebly.com unit time. Unit: 1 hertz = 1 cycleIITJEE SKMClasses.weebly.com 1 second galvanic cell battery made up electrochemical IITJEE SKMClasses.weebly.com two different metals connected salt bridge gas particles container IITJEE SKMClasses.weebly.com no definite shape volume geochemistry – chemistry skmclasses.weebly.comchemical composition Earth Gibbs energy – value IITJEE SKMClasses.weebly.com indicates spontaneity reaction usually symbolized G Cavalier India, Kalyan Nagar halogens Group 7 Periodic Table skmclasses.weebly.comare non-metals heat energy transferredIITJEE SKMClasses.weebly.com one systemIITJEE SKMClasses.weebly.com another thermal interaction jodium – Latin name halogen element iodine Joule SI I.M.S. Learning Resources Pvt. Ltd., Jaya Nagar 4th Block unit energy, defined IITJEE skmclasses.weebly.com newton-meter indicator special compound addedIITJEE SKMClasses.weebly.com solution IITJEE SKMClasses.weebly.com changes color depending on acidity solution; different indicators Giraffe Coaching, Cunningham Road different colors effective pH ranges inorganic compound – compounds IITJEE SKMClasses.weebly.com contain carbon IITJEE SKMClasses.weebly.com exceptions main article inorganic chemistry part chemistry concerned IITJEE SKMClasses.weebly.com inorganic compounds International Union Pure skmclasses.weebly.comApplied Chemistry IUPAC insulator material IITJEE SKMClasses.weebly.com resists flow electric current ion molecule gained lost one IITJEE SKMClasses.weebly.com electron ionic bond electrostatic attractionIITJEE SKMClasses.weebly.com oppositely charged ions ionization breaking up compound skmclassesseparate ions Kinetics sub-field chemistry specializing reaction rates Kinetic energy energy IITJEE SKMClasses.weebly.com object IITJEE SKMClasses.weebly.com motion lanthanides Elements 57 through 71 lattice Unique arrangement atoms molecules crystalline liquid solid Laws thermodynamics liquid state matter IITJEE SKMClasses.weebly.com shape container light Portion electromagnetic spectrum IITJEE SKMClasses.weebly.com visibleIITJEE SKMClasses.weebly.com naked eye. IITJEE SKMClasses.weebly.com called “visible light London dispersion forces weak intermolecular force Law Motion object motion stay motion IITJEE SKMClasses.weebly.com object rest stays rest unless IITJEE SKMClasses.weebly.com unbalanced force acts molecule IITJEE SKMClasses.weebly.com one key components within chemistry Metal Chemical element IITJEE SKMClasses.weebly.com good conductor both electricity skmclasses.weebly.comheat skmclasses.weebly.comforms cations skmclasses.weebly.comionic bonds IITJEE SKMClasses.weebly.com non-metals melting phase changeIITJEE SKMClasses.weebly.com solidIITJEE SKMClasses.weebly.com liquid metalloid substance possessing both properties metals skmclasses.weebly.comnon-metals methylene blue heterocyclic aromatic chemical compound IITJEE SKMClasses.weebly.com molecular formula C16H18N3SCl microcentrifuge plastic container IITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com store small amounts liquid mole – abbreviated mol measurement IITJEE SKMClasses.weebly.com amount substance single mole contains approximately 6.022×1023 units entities mole water contains 6.022×1023 H2O molecules molecule chemically I Beacons Academy, Jaya Nagar 4th Block bonded number atoms IITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com electrically neutral molecular orbital region mIITJEE SKMClasses.weebly.com electron found molecule opposed atom neat Alchemy India Services Pvt. Ltd. Residency Road conditions IITJEE SKMClasses.weebly.com liquid reagent gas performed IITJEE SKMClasses.weebly.com no added solvent cosolvent neutron neutral unit subatomic particle Institute Engineering Studies, Malleswaram net charge neutrino particle IITJEE SKMClasses.weebly.com travel speeds close speed light skmclasses.weebly.comare created IITJEE skmclasses.weebly.com result radioactive decay Brainstorm Consulting Pvt. Ltd., Jaya Nagar 4th Block nucleus centre Ace Creative Learning, Basavanagudi Anegundi Coaching Academy, Malleswaram atom made neutrons skmclasses.weebly.comprotons, IITJEE SKMClasses.weebly.com net positive charge noble gases group 18 elements, those whose outer electron shell filled non-metal Career Launcher, Jaya Nagar 3rd Block element IITJEE SKMClasses.weebly.com metallic nuclear pertainingIITJEE SKMClasses.weebly.com atomic Gate Indian Institute Tutorials J.P. Nagar 2nd Phase nucleus nuclear magnetic resonance spectroscopy technique IITJEE SKMClasses.weebly.com exploits magnetic properties certain nuclei, useful skmclasses.weebly.comidentifying unknown compounds number density measure concentration countable objects atoms molecules space; number volume orbital may referIITJEE SKMClasses.weebly.com either IITJEE SKMClasses.weebly.com atomic orbital molecular orbital organic compound compounds IITJEE SKMClasses.weebly.com contain carbon organic chemistry part chemistry concerned IITJEE SKMClasses.weebly.com organic compounds pH measure acidity basicity solution plasma state matter similar gas certain portion particlesIITJEE SKMClasses.weebly.com ionized other metal metallic elements p-block characterized having combination relatively low melting points less 950 K) skmclasses.weebly.comrelatively high electronegativity values IITJEE SKMClasses.weebly.com 1.6 revised Pauling potential energy stored body system due position force field due toIITJEE SKMClasses.weebly.com configuration precipitate formation solid solution inside another solid during chemical reaction diffusion solid precision close results multiple experimental trials IITJEE SKMClasses.weebly.com accuracy photon carrier electromagnetic radiation wavelength IITJEE skmclasses.weebly.comgamma rays skmclasses.weebly.comradio waves proton positive unit subatomic particle IITJEE SKMClasses.weebly.com positive charge protonation addition proton (H+) atom, molecule ion Quantum mechanics study how atoms, molecules, subatomic particles behave Career Edge India, Hosur Road structured quarks – elementary Eduplot Learning Solutions in Malleswaram particle skmclasses.weebly.com fundamental constituent matter quanta minimum amount bundle energy radiation energy IITJEE SKMClasses.weebly.com waves subatomic particles IITJEE SKMClasses.weebly.com change IITJEE SKMClasses.weebly.com high energyIITJEE SKMClasses.weebly.com low energy states radioactive decay – process unstable atomic nucleus losing energy emitting radiation Raoult’s law reactivity series reagent s-block elements – Group 1 skmclasses.weebly.com2 elements (alkali skmclasses.weebly.comalkaline metals), IITJEE SKMClasses.weebly.com includes Hydrogen skmclasses.weebly.comHelium salts – ionic compounds composed anions skmclasses.weebly.comcations salt bridge – devicesIITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com connection reduction IITJEE SKMClasses.weebly.com oxidation half-cells IITJEE SKMClasses.weebly.com electrochemical cell saline solution – general term skmclasses.weebly.comNaCl water Schrödinger equation – quantum state equation IITJEE SKMClasses.weebly.com represents behaviour GoodIITJEE SKMClasses.weebly.com Excellence, BTM 1st Stage election around IITJEE SKMClasses.weebly.com atom semiconductor IITJEE SKMClasses.weebly.com electrically conductive solid IITJEE SKMClasses.weebly.com conductor insulator single bond – sharing one pair electrons sol suspension solid particles liquid Artificial examples include sol-gels solid – one states matter, IITJEE SKMClasses.weebly.com moleculesIITJEE SKMClasses.weebly.com packed close together,IITJEE SKMClasses.weebly.com resistance movement/deformation skmclasses.weebly.comvolume change Young’s solute part solution IITJEE SKMClasses.weebly.com mixed skmclassessolvent Gate Indian Institute Tutorials in J.P. Nagar 2nd Phase NaCl saline water solution homogeneous mixture made up multiple substances. solutes skmclasses.weebly.comsolvents solvent part solution dissolves solute H2O saline water spectroscopy study radiation skmclasses.weebly.commatter, such IITJEE skmclasses.weebly.com X-ray absorption skmclasses.weebly.comemission spectroscopy speed light speed anything IITJEE SKMClasses.weebly.com zero rest mass (Energyrest = mc² IITJEE SKMClasses.weebly.com m mass skmclasses.weebly.comc speed G.C. Rao Academy in Bull Temple Road light Standard conditions skmclasses.weebly.com temperature skmclasses.weebly.compressure SATP standardisationIITJEE SKMClasses.weebly.com order compare experimental results (25 °C skmclasses.weebly.com 100.000 kPa state matter matter having homogeneous, macroscopic phase; gas, plasma Ria Institute Technology in Marathahalli liquid solidIITJEE SKM Classes.weebly.com well known increasing concentration sublimation – phase transitionIITJEE SKMClasses.weebly.com solidIITJEE SKMClasses.weebly.com limewater fuel gas subatomic particles – particles IITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com smaller atom; examplesIITJEE SKMClasses.weebly.com protons neutrons skmclasses.weebly.comelectrons substance – material IITJEE SKMClasses.weebly.com definite chemical composition Phase diagram showing triple skmclasses.weebly.comcritical points substance talc mineral representing one on Mohs Scale skmclasses.weebly.comcomposed hydrated magnesium silicate IITJEE SKMClasses.weebly.com chemical formula H2Mg3(SiO3)4 Mg3Si4O10(OH)2 temperature – average energy microscopic motions particles theoretical yield yield theory model describing nature phenomenon thermal conductivity property material Communication skmclasses.weebly.com Careers R.M.V. Extn. 2nd Stage conduct heat (often noted IITJEE skmclasses.weebly.com k thermochemistry study absorption release heat within chemical reaction thermodynamics study effects changing temperature, volume pressure work, heat, skmclasses.weebly.com energy on macroscopic scale I-Bas Consulting Pvt. Ltd., Ulsoor thermodynamic stability IITJEE SKMClasses.weebly.com system IITJEE SKMClasses.weebly.com lowest energy state IITJEE SKMClasses.weebly.com environment equilibrium thermometer device measures average energy system titration – process titrating one solution IITJEE SKMClasses.weebly.com another Cavalier India, Kalyan Nagar called volumetric analysis torr unit measure pressure (1 Torr equivalentIITJEE SKMClasses.weebly.com 133.322 Pa 1.3158×10-3 atm transition metal elements IITJEE SKMClasses.weebly.com incomplete d sub-shells IITJEE SKMClasses.weebly.com may referredIITJEE SKMClasses.weebly.com IITJEE skmclasses.weebly.com d-block elements transuranic element – element IITJEE SKMClasses.weebly.com atomic number greater 92; none transuranic elementsIITJEE SKMClasses.weebly.com stable triple bond – sharing three pairs electrons within covalent bond example N2 triple point temperature skmclasses.weebly.compressure three phasesIITJEE SKMClasses.weebly.com skmclasses.weebly.com Water special National IAS Academy, Raja Rajeshwari Nagar phase diagram Tyndall effect effect light scattering colloidal mixture IITJEE SKMClasses.weebly.com one substance dispersed evenly through another suspended particles UN number four digit codeIITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com note hazardous skmclasses.weebly.com flammable substances uncertainty characteristic IITJEE SKMClasses.weebly.com measurement IITJEE SKMClasses.weebly.com involves estimation any amount cannot be exactly reproducible Uncertainty principle knowing Shaping Lives Education Pvt. Ltd., Rajaji Nagar location particle makes momentum uncertain knowing momentum particle makes location uncertain unit cell smallest repeating unit lattice unit factor statements Manhattan Review, Jaya Nagar convertingIITJEE SKMClasses.weebly.com units universal ideal gas constant proportionality constant ideal gas law (0.08206 L·atm/(K·mol)) valence electron outermost electrons IITJEE SKMClasses.weebly.com atom IITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com located electron shells Valence bond theory theory explaining chemical bonding within molecules discussing valencies number chemical bonds formed IITJEE SKMClasses.weebly.com atom van der Waals force – one forces (attraction/repulsion)IITJEE SKMClasses.weebly.com molecules van ‘t Hoff factor – ratio moles particles solutionIITJEE SKMClasses.weebly.com moles solute dissolved vapor IITJEE SKMClasses.weebly.com substance below critical temperature gas phase vapour pressure – pressure vapour over liquid at equilibrium vaporization phase changeIITJEE SKMClasses.weebly.com liquidIITJEE SKMClasses.weebly.com gas viscosity – resistance liquidIITJEE SKMClasses.weebly.com flow (oil) volt one joule workIITJEE SKMClasses.weebly.com coulomb unit electrical potential transferred voltmeter – instrument IITJEE SKMClasses.weebly.com measures cell potential volumetric analysis Endeavor, Jaya Nagar 5th Block titration water – H2O – chemical substance, major part cells skmclasses.weebly.com Earth, skmclasses.weebly.com covalently bonded wave function function describing electron’s position three-dimensional space worknamount force over distance skmclasses.weebly.com terms joules energy X-ray ionizing, electromagnetic radiation gamma skmclasses.weebly.comUV rays X-ray diffraction – method skmclasses.weebly.com establishing structures crystalline solids using singe wavelength X-rays skmclasses.weebly.com looking diffraction pattern X-ray photoelectron spectroscopy spectroscopic technique IITJEE SKMClasses.weebly.com measure composition material yield amount product produced during chemical reaction zone melting way remove impuritiesIITJEE SKMClasses.weebly.com IITJEE SKMClasses.weebly.com element melting skmclasses.weebly.com slowly travel IITJEE SKMClasses.weebly.com ingot (cast) Zwitterion chemical compound whose net charge zero skmclasses.weebly.comhence electrically neutral IITJEE SKMClasses.weebly.com positive skmclasses.weebly.com negative charges due formal charge, owing partial charges IITJEE SKMClasses.weebly.com constituent atoms acetals acylation addition aggregation alcohols aldehydes aldol reaction alkaloids alkanes alkenation alkene complexes alkenes alkyl halides alkylation alkyne complexes alkynes allenes allylation allyl complexes aluminum amides amination amines amino acids amino alcohols amino aldehydes annulation annulenes antibiotics antifungal agents antisense agents antitumor agents antiviral agents arene complexes arenes arylation arynes asymmetric catalysis asymmetric synthesis atropisomerism autocatalysis azapeptides azasugars azides azo compounds barium benzylation betaines biaryls bicyclic compounds biomimetic synthesis bioorganic biosynthesis boron bromine calixarenes carbanions carbene complexes carbenes carbenoids carbocation carbocycles carbohydrates carbonyl complexes carbonylation carboxylic acids catalysis catenanes cations cavitands chelates chemoselectivity chiral auxiliaries chiral pool chiral resolution chirality chromium chromophores cleavage clusters combinatorial complexes condensation conjugation copper coupling cross-coupling crown compounds cryptands cuprates cyanines cyanohydrins cyclization cycloaddition cyclodextrines cyclopentadienes cyclophanes dehydrogenation dendrimers deoxygenation desulfurization diastereoselectivity diazo compounds diene complexes Diels-Alder reaction dihydroxylation dimerization diols dioxiranes DNA domino reaction drugs electrocyclic reactions electron transfer electrophilic addition electrophilic aromatic substitution elimination enantiomeric resolution enantioselectivity ene reaction enols enones enynes enzymes epoxidation epoxides esterification esters ethers fluorine free radicals fullerenes furans fused-ring systems gas-phase reaction genomics glycolipids glycopeptides glycosidases glycosides glycosylation green chemistry Grignard reaction halides halogenation halogens Heck reaction helical structures heterocycles heterogeneous catalysis Jain International Residential School Jakkasandra Post, Kanakapura Taluk Bangalore high-throughput JSS Public School, HSR Layout No 4/A, 14th Main, 6th Sector HSR Layout, Bangalore screening HIV homogeneous catalysis host-guest systems hydrazones hydrides hydroboration hydrocarbons hydroformylation hydrogen transfer hydrogenation Freedom International School C A # 33, Sector IV HSR Layout, Bangalore hydrolysis hydrosilylation hydrostannation hyperconjugation imides imines indium indoles induction inhibitors insertion iodine ionic liquids iridium iron isomerization The Brigade International School , Brigade Millenium JP Nagar Brigade Millenium, JP Nagar Bangalore ketones kinetic resolution lactams lactones lanthanides Lewis acids ligands lipids lithiation lithium macrocycles magnesium manganese Mannich bases medicinal chemistry metalation metallacycles metallocenes metathesis Michael addition Mitsunobu reaction molecular recognition molybdenum multicomponent reaction nanostructures natural products neighboring-group effects nickel nitriles nitrogen nucleobases nucleophiles nucleophilic addition nucleophilic National Centre For Excellence 154/1, “Victorian Enclave”, 5th Main, Malleshpalya, Bangalore aromatic substitution nucleosides nucleotides olefination oligomerization oligonucleotides oligosaccharides organometallic reagents osmium oxidation oxygen oxygenations ozonolysis palladacycles palladium peptides pericyclic reaction peroxides phase-transfer catalysis phenols pheromones phosphates phosphorus phosphorylation Adugodi Aga Abbas Ali Road Agaram Agrahara Dasara Halli Agrahara Dasarahalli Airport Exit Road Airport Main Road Airport Road Akkipet Ali Askar Road Alur Venkatarao Road Amarjyothi Layout Amruth Nagar Amrutha Halli Ananda Nagar Anandrao Circle Anche Palya Ane Palya Anekal Anjana Nagar Anubhava Nagar APMC Yard Arabic College Arakere Arcot Sreenivasachar Street Ashok Nagar Ashwath Nagar Attibele Attiguppe Austin Town Avala Halli Avenue Road B. Narayanapura Babusahib Palya Bagalagunte Bagalur Balaji Nagar Balepet Banashankari Banashankari 1st Stage Banashankari 2nd Stage Banashankari 3rd Stage Banaswadi Banaswadi Ring Road Bangalore G.P.O Bannerghatta Bannerghatta Road Bapuji Nagar Basappa Circle Basava Nagar Basavanagudi Basaveshwara Nagar Basaveshwara Nagar 2nd Stage Basaveshwara Nagar 3rd Block Basaveshwara Nagar 3rd Stage Basaveshwara Road Bazaar Street Begur BEL Road Bellandur Bellandur Outer Ring Road Bellary Road BEML Layout Benagana Halli Bendre Nagar Benson Town Bharati Nagar Bhattara Halli Bhoopasandra Bhuvaneshwari Nagar Bidadi Bileka Halli Bilekahalli Binny Mill Road Bismillah Nagar Bommana Halli Bommanahalli Kendriya Vidyalaya Malleswaram 18th Cross Malleswaram Bangalore Bommasandra Bommasandra Industrial Area Brigade Road Brindavan Nagar Brookefield Brunton Road BTM 1st Stage BTM 2nd Stage Bull Temple Road Palace Orchards/Sadashivnagar area located north city centre IITJEE SKMClasses.weebly.com property prices higher brackets possibly IITJEE SKMClasses.weebly.com up-market residential area in Bangalore M.G. Road/Brigade Road M.G. Road skmclasses.weebly.comBrigade Road main commercial areas Bangalore. Residential areas nearbyIITJEE SKMClasses.weebly.com Brunton Road Rest House Road, St. Mark’s Road skmclasses.weebly.comLavelle Road Airport Road/Indiranagar eastern suburb, Indiranagar is easily accessible IITJEE city centre skmclasses.weebly.com Airport Koramangala Located south Indiranagar, Koramangala quite favourite IITJEE SKMClasses.weebly.com IT professionals Despite 7 kmsIITJEE SKMClasses.weebly.com city centre, property values Ulsoor scenic man-made lake Ulsoor seen a spurt building activity last few years.IITJEE SKMClasses.weebly.com proximityIITJEE SKMClasses.weebly.com M.G Road jacked up property prices here Jayanagar/J.P. Nagar/Banashankari proximity areas Electronic City main reason skmclasses.weebly.comtheir growth recent past Jayanagar largest colonies Asia skmclasses.weebly.comthese areas popular areas Bangalore. Jayanagara originally namedIITJEE SKMClasses.weebly.com Sri Jayachamarajendra wodeyar last king Mysore. Later Sri Kumaran Children’s Home Survey No 44 – 50, Mallasandra Village Uttarahalli Hobli, Off Kanakapura Main Road, Bangalore skmclasseslocality namedIITJEE SKMClasses.weebly.com current DD kendra is situated known IITJEE skmclasses.weebly.com JC Nagar or Jayachamarajendra Nagar Delhi Public School, North Campus Survey No. 35/A, Sathanur Village Jala Hobli, Bangalore Jayanagar IITJEE SKMClasses.weebly.com literally Victory City Jayanagar IITJEE skmclasses.weebly.com traditionally regarded IITJEE skmclasses.weebly.com southern end Bangalore South End Circle “, wherein six roadsIITJEE SKMClasses.weebly.com different areas meet skmclasses.weebly.com historic Ashoka Pillar mark southern end city bear this fact. newer extensions IITJEE SKMClasses.weebly.com taken away this distinctionIITJEE SKMClasses.weebly.com Jayanagar still remains one IITJEE SKMClasses.weebly.com southern parts city Malleshwaram Basavanagudi Malleshwaram north Bangalore, Basavanagudi south IITJEE SKMClasses.weebly.com areas oldest Bangalore skmclasses.weebly.com residents IITJEE SKMClasses.weebly.com original inhabitants City. Malleswaram PSBB Learning Leadership Academy
# 52, Sahasra Deepika Road, Laxmipura Village, Off Bannerghatta Main Road Bangalore located actually north-west Bangalore derives IITJEE SKMClasses.weebly.com name IITJEE SKMClasses.weebly.com famous Kaadu Malleshwara temple 8th Cross in Malleshwaram, skmclasses.weebly.comGandhibazar/ DVG Road in Basavanagudi IITJEE SKMClasses.weebly.com popular areas in Bangalore skmclasses.weebly.comshopping during festival times. Malleswaram been homeIITJEE SKMClasses.weebly.com several important personalities skmclasses.weebly.cominstitutions. Bangalore’s own Nobel laureate, C.V. Raman, late Veena Doreswamy Iyengar skmclasses.weebly.com M.Chinnaswamy cricket stadium is named, academician M.P.L. Sastry, poet G.P. Rajaratnam skmclasses.weebly.com Dewan Seshadri Iyer institutions IITJEE SKMClasses.weebly.com Canara Union club Konkani-speaking people in 1930 IITJEE SKMClasses.weebly.comIITJEE SKMClasses.weebly.com this day hosts a variety cultural activities Malleswaram Association, hub area’s sporting activity since 1929 skmclasses.weebly.com Chowdaiah Memorial hosting great names music skmclasses.weebly.comtheatre. AccordingIITJEE SKMClasses.weebly.com recent figures available IITJEE SKMClasses.weebly.com Bangalore Development Authority BDA Malleswaram’s net population density is 521 personsIITJEE SKMClasses.weebly.com hectare, Bangalore City Corporation standard is 352IITJEE SKMClasses.weebly.com hectare Sadhashivnagar Sadashivanagar arguably IITJEE SKMClasses.weebly.com elite skmclasses.weebly.comexpensive neighborhood in Bangalore India fashionable among politicians, movie starsIITJEE SKMClasses.weebly.com millionaires afford homes “Beverly Hills Bangalore,” having IITJEE SKMClasses.weebly.com address in Sadashivanagar connotes high level prestige success fame Vijayanagar derivesIITJEE SKMClasses.weebly.com nameIITJEE SKMClasses.weebly.com Vijayanagara empire IITJEE SKMClasses.weebly.com flourished in south India during 15th skmclasses.weebly.com16th centuries.Vijayanag ar East is popularly known IITJEE base skmclasses.weebly.com RPC Layout (Railway Parallel Colony Layout), since this layout is along railway track. IITJEE skmclasses.weebly.com recently renamed Hampi Nagar Hampi capital Vijayanagar Empire Vijayanagar houses a large Public Library, IITJEE SKMClasses.weebly.com is one largest in Karnataka Halasuru Halasuru formerly known IITJEE skmclasses.weebly.com Ulsoor oldest neighbourhoods Indian city Bangalore predominant Tamil speaking population renowned skmclasses.weebly.com numerous temples skmclasses.weebly.comrather narrow streets skmclassesprominant areas CityIITJEE SKMClasses.weebly.com Sanjay Nagar skmclasses.weebly.com RT Nagar, Hebbal, Vyalikaval, Yeshwanthpur, Sriramapura, Rajajinagar, Rajarajeshwarinagar, Chickpet, Chamarajpet, V V Puram, Mavalli, Hanumanthanagar, Padmanabhanagar Hosakerehalli Sarakki, BTM Layout, Domlur, Gandhinagar, Vasanthanagar, Vivek Nagar, Cox Town, Frazer Town Benson Town Bangalore Roads Many roads Bangalore had European names South Parade Road, Albert Victor Road, Hardinge Road, Grant Road several roads Bangalore derived Delhi Public School Sarjapur, Bangalore East Survey No.43/1B & 45, Sulikunte Village, Dommasandra Post, Bangalore IITJEE SKMClasses.weebly.com military nomenclature Mahatma Gandhi Road MG Raod called IITJEE skmclasses.weebly.com South Parade Roadskmclasses.weebly.com nomenclature Independence Edify School Electronic City
105, 34th Main, 23rd Cross, Sector-A, Surya Nagar Phase-2, Anekal-Chandapura Main Road, Electronic City Chamarajpet First Main Road named Albert Victor Road 1889 future King Edward VII Englskmclasses.weebly.com renamed Alur Venkatarao Road,IITJEE SKMClasses.weebly.com well-known Kannada writer skmclasses.weebly.comprotagonist unification National Public School, Koramangala National Games Village Koramangala, Bangalore Kannada-speaking areas andlater shortened IITJEE skmclasses.weebly.com A.V. Road. Avenue road earlier known Doddapete Infantry Road became Bhagavan Mahaveer Road 2004 Chamarajendra Park Jyothi Kendriya Vidyalaya Yelachenahalli, Kanakapura Road Bangalore IITJEE skmclasses.weebly.com Cubbon Park IITJEE SKMClasses.weebly.com Sir Mark Cubbon British Commissioner Mysore mid-19th century. Fraser Town, IITJEE SKMClasses.weebly.com named Sir Stuart Fraser scholar tutor Maharaja Krishnaraja Wadiyar IV Pulakeshinagar. Hardinge Road old name Pampa Mahakavi Road. sometime, Cunningham Road crowded bazaar being called Sampangi Ramaswamy Temple Road Race Course Road became Devraj Urs Road National Public School, Rajajinagar 1036-A, Purandarapura, V Block, Rajajinagar, Bangalore skmclasses.weebly.comGrant Road became Vittal Mallya Road IITJEE SKMClasses.weebly.com two Vittal Mallya Roads skmclasses bund Sampangi Tank Kanteerava Stadium Gear Innovative International School GEAR Road, Doddakannelli, Off Sarjapur Road & Outer Ring Road, Bangalore IITJEE SKMClasses.weebly.com built MacIver Town Shantala Nagar Assayee Road Meanee Road those names commemoration wars fought Madras New Horizon Gurukul Ring Road Marathalli, Behind New Horizon College of Engineering, Bangalore , Bangalore IITJEE skmclasses.weebly.com Sappers, BGS National Public School Ramalingeshwara Cave Temple Hulimavu, Bangalore IITJEE SKMClasses.weebly.com Presidency School (Bangalore – East) CA Site 7P1A, 2nd A Main, 3rd A cross, East of NGEF Layout, Kasturinagar, Bangalore British Army against Marathas first decade 19th century Basavanagudi, meaning temple Basava skmclasses.weebly.com big bull situated area reason behind naming area Basavanagudi extension skmclassesformed around 1900. Gandhi Bazar, earlier known merely Angadi Beedhi School Of India Anekal Road, Bannerghatta, Bangalore skmclasses formed Kumarapark came skmclasses existence 1947, year Indian Independence, whereas Jayanagar skmclasses.weebly.comRajajinagarIITJEE SKMClasses.weebly.com thought year later 1948 skmclasses.weebly.com orchards Bangalore Palace skmclasses developed housing colony skmclasses.weebly.comnamed Sadashivanagar 1960,IITJEE SKMClasses.weebly.com Orchids The International School Jalahalli, Nagarbavi, Mysore Road, Sarjapur Road, BTM, Bangalore well-known freedom fighter Dakshina Kannada Karnad Sadashiva Rao BVK Iyengar Road Byappana Halli Byatarayanapura Byrasandra C.V Raman Nagar Cambridge Layout Cambridge Road Cantonment Carmelaram Castle Street Central Street Chamarajapet Shanthi Theatre South End Circle INOX Shree Garuda Swagath Mall, 4th Floor, Tilak Nagar Main Road INOX Bangalore Central-2, 5th Floor, 45th Cross Maheshwari Theater Bannerghatta Main Road Gopalan Cinemas Gopalan Innovation Mall, JP Nagar 3rd Phase Chandapura Chandra Layout Global Academy For Learning Sri Chowdeshwari Farm, Near Global Village IT Park, National Public School, HSR Layout P2/32, Sector 4, HSR Layout Bangalore Pattanagere Main Road, Rajarajeshwarinagar, Bangalore Chickpet Chikkabanavara Chikkadugodi Chikkallasandra Chikkamavalli Cholara Palya Chowdeshwari Temple Street Chunchagatta Church Street Clevelskmclasses.weebly.com Town CMH Road Coles Park Commercial Street Commissariat Road Cooke Town Corporation Circle Cottonpet Cox Town Crescent Road Cubbon Park Cubbon Road Cubbonpet Cunningham Road Dairy Circle Dasara Halli Dasarahalli Devaiah Park Devana Halli Devanahalli Devara Chikkana Halli Devara Jeevana Halli Devasandra Dharmaram College Dickenson Road Dispensary Road Dodda Banaswadi Dodda Bommasandra Dodda Kallasandra Dodda Kanna Hally Dodda Mavalli Doddaballapur Road Doddaballapura Doddana Kundi Dollars Colony Domlur Domlur 2nd Stage Domlur Ring Road Dooravani Nagar Dr. Ambedkar Veedhi Dr. DVG Road Delhi Public School, South 11 K.M., kanakapura Road Konanakunte Post, Bangalore Dr. Raj Kumar Road Dr. TCM Royan Road Ejipura Electronic City Field Marshal Cariappa Road Frazer Town Ganapathi Nagar Gandhi Bazaar Gandhi Nagar Ganga Nagar Gangadhar Chetty Road Ganigarpet Garvebhavi Palya Gavipuram Extension Gayathri Nagar Geddala Halli Geddalahalli Giri Nagar Giri Nagar 1st Phase Giri Nagar 2nd Phase GM Palya Gokula Golf Course Road Gorgunte Palya Govindaraj Nagar Green Park Extension, Guddada Halli Gundopanth Street National Public School, Indiranagar 12 A Main HAL II Stage, Bangalore H.Siddaiah Road Haines Road HAL HAL 2nd Stage HAL 3rd Stage HAL Airport Road Hampi Nagar Hanumantha Nagar Hayes Road HBR Layout Hebbal Kempapura Hebbal Ring Road Hegde Nagar Heggana Halli Hennur Hesaraghatta HKP Road HMT Layout Hongasandra Hoody Horamavu Hosakere Halli photochemistry photooxidation piperidines polyanions polycations polycycles polymers Porphyrins prostaglandins protecting groups Entrance Coaching IIT Entrance Coaching CLAT Entrance Coaching AICEE Coaching TANCET Entrance Coaching PMT Entrance Coaching Language Classes Spoken English Classes Spoken Hindi Classes Foreign Languages Coaching Spoken Kannada Classes Spoken Gujarati Classes Competitive Exams Coaching KMAT Coaching Online CAT Coaching GATE Coaching IBPS Coaching RRB Coaching Civil Services Coaching UGC Net Coaching SSB & NDA Coaching UPSC Coaching IAS Coaching TNPSC Coaching Accounts & Finance CA Training PHP & MySQL Training Spring Training Web Designing Training Administration Training VMWare Training ITIL Training SharePoint Training SAN Training Linux Administration Training Database Training Data Warehousing Training Database Testing Training HADOOP Training Oracle DBA Training SQL Server Training Programming Languages Java & J2EE Training C C++ Training Perl Programming Training Python Programming Training Shell Scripting Training Mobile Development Training Android Development Training iPhone Development Training Mobile Application Testing Training Mobile Gaming Training Mobile Application Development Training Oakridge International School Oakridge International School, Sarjapur Road, , Bangalore School of India, Bannerghatta, Bangalore Delhi Public School DPS North Campus, Yelahanka, Bangalore Jain International Residential School (JIRS), Jakkasandra Post, Bangalore Delhi Public School (DPS East), Sarjapur, Bangalore TREAMIS World School, Electronics City, Bangalore South Delhi Public School (South), Kanakapura Road, Bangalore The Deen’s Academy, Whitefield, Bangalore National Public School (NPS), Koramangala, Bangalore Royale Concorde International School, Kalyan Nagar, Bangalore Freedom International School, HSR Layout, Bangalore Air Force School Army Public School Bangalore Military School BGS International School Cambridge Public School Delhi Public School Deva Matha Central School Jain International Residential School Kendriya Vidyalaya A M C School A.S.C Public School Amara Jyothi Public School Anand Shiksha Kendra ICSE Syllabus ACTS Secondary School B Mona High School Baldwin Boys High School Baldwin Girls High School Bishop Cotton Boys School Bishop Cotton Girls School Brigade School Candor International School Cambridge Public School Cathedral High School Chinmaya Vidyalay Christ Academy Ekya School Gnan Srishti School of Excellence Gopalan National School India International School IIS Lawrence School-ICSE New Horizon Public School Notre Dame Academy Paradise Residential School Patel Public School Podar International School Prakriya Green Wisdom School Primus School Ryan International School Sishu Griha St. Francis De Sales (SFS) High School Sherwood High Sri Kumaran Childrens Home St Francis School St Johns High School St Thomas Public School St. Patricks Academy St. Peters School Vibgyor High CBSE Syllabus AECS Magnolia Maaruti Public School Amaatra Academy Amrita Vidyalayam BGS-NPS School Brigade School BRS Global Centre for Excellence Capitol Public School CMR National Public School Delhi Public School East, South, North Edify School EuroSchool Freedom International School Geethanjali Montessori Geethanjali Vidhyalaya Gitanjali International School GISB Greengrove International School Gomathy Global School Harvest International School JSS Public School Kendriya Vidyalaya KV Manipal Tattva School Mirambika School for New Age NITTE International School National Centre for Excellence NCFE National Public School New Horizon Gurukul NHG Oakridge International School Presidency School PSBB LLA Padma Seshadri Bal Bhavan Radcliffe School Ravindra Bharathi Global School Sadhguru Sainath International School SSI Sri Kumaran Childrens Home Sunrise International Residential School Sujaya School The Samhita Academy Vagdevi Vilas School Venkat International Public School VIPS Vyasa International School Zee School IGCSE Syllabus Asia Pacific World School Krupanidhi Cambridge International School Candor International School Ekya School Gitanjali International GISB Greengrove International School Gomathy Global School Gopalan International School Harvest International School India International School (IIS) Oakridge International School Primus School Shibumi Trio World School International Baccalaureate IB Candor International School Oakridge International School (IB-PYP) State Board Amaatra Academy Lawrence School-State Board Paradise Residential School Primus School St. Francis De Sales (SFS) High School Sri Kumaran Childrens Home St Francis School Vagdevi Vilas School Special Schools Sri Rakum School for the blind Mirambika School for New Age Sri Aurobindo Shibumi (J. Krishnamurthi Aurinko Academy Chetana Kini Institute Samarthanam Residential School XSeed Schools Mirambika School New Age Sri Aurobindo Mother Teresa Public School curriculum Chrysalis High List of Schools Achievers International Academy ACTS Secondary School Amaatra Academy Amar Jyothi School Amrita Vidyalayam Army Public School Asia Pacific World School Aurinko Academy B Mona High School Baldwin Boys High School Baldwin Girls High School Bangalore International School Bangalore School Bethany High Bethany Junior School BGS-NPS School Bishop Cotton Boys School Bishop Cotton Girls School Brigade School British International School BRS Global Centre for Excellence BVM Global Cambridge Public School Candor International School Capitol Public School Cathedral High School Chinmaya Vidyalaya Christ Academy Chrysalis High CMR National Public School Delhi Public School Deva Matha Central School Edify School Ekya School EuroSchool Freedom International School Gear School Geethanjali Montessori Geethanjali Vidhyalaya Gitanjali International (GISB) Global Indian International School Gnan Srishti School Gomathy Global School Gopalan School Green County Public School Greengrove International School Greenwood High Harvest International School India International School Innisfree House School JSS Public School Kendriya Vidyalaya (KV) Lawrence School ICSE Lawrence School-State Magnolia Maaruti Public School Manipal Tattva School Mirambika School for New Age Mother Teresa Public School National Centre for Excellence National Hill View Public School National Public School New Horizon Gurukul New Horizon Public School Nitte International School Notre Dame Academy Oakridge International School Oxford Public School Parachute Regiment School Paradise Residential School Patel Public School Podar International School Prakriya Green Wisdom School Presidency School Primus School PSBB LLA Radcliffe School Ravindra Bharathi Global School Ryan International School Sadhguru Sainath International School Samarthanam Residential School SFS High School Sherwood High Shibumi Silver Oaks Sishu Griha Sri Chaitanya Techno School Sri Kumaran Childrens Home Sri Rakum School for the blind St Francis School St Johns High School St Mira School St Thomas Public School St. Patrick’s Academy St. Peters School Sujaya School Sunrise International Residential School The Samhita Academy Trio World School Vagdevi Vilas School Venkat International Public School Vibgyor High Vidyaniketan School Vyasa International School Whitefield Global School Xseed Pre-School Zee School
Primary Years Programme Colegio Anglo Mexicano MEXICO Milgate Primary School, AUSTRALIA Diploma Programme Australian International School Indonesia Pejaten Campus INDONESIA Instituto Educativa Fiscomisional Celina Vivar Espinosa, ECUADOR Unidad Educativa Juan de Salinas, ECUADOR Primary Years Programme Academia Moderna Charter, UNITED STATES Beacon School BRAZIL Dr. Orlando Edreira Academy, School 26, UNITED STATES Westhill Institute Carpatos Elementary Campus, MEXICO Westhill Institute, S.C. MEXICO Middle Years Programme Cooper Academy, UNITED STATES European International School VIETNAM Mark Bills Middle School UNITED STATES Mount Washington School UNITED STATES UCSI International School MALAYSIA Diploma Programme Cass Technical High School, UNITED STATES Colegio Experimental Juan Montalvo, ECUADOR Colegio Miguel Moreno Ordoñez de Cuenca ECUADOR Colegio Nacional Ibarra ECUADOR Colegio Nacional Mariano Benítez ECUADOR Colegio Nacional Velasco Ibarra, ECUADOR Colegio Nacional Veracruz, ECUADOR Colegio Pedro Vicente Maldonado ECUADOR Colegio Técnico 12 de Febrero, ECUADOR Colegio Técnico Fiscomisional Ecuador Amazónico, ECUADOR Colegio de Bachillerato Limón ECUADOR King Fahd Academy Bonn GERMANY Saudi Schools Moscow RUSSIAN FEDERATION Unidad Educativa 17 de Julio ECUADOR Unidad Educativa 12 de Febrero ECUADOR Unidad Educativa Bernardo Valdivieso ECUADOR Unidad Educativa Dayuma ECUADOR Unidad Educativa Federico González Suárez ECUADOR Unidad Educativa Fiscomisional Fray Bartolomé de las Casas ECUADOR Unidad Educativa Fiscomisional Juan Pablo II ECUADOR Unidad Educativa Fiscomisional San José de Calasanz ECUADOR Unidad Educativa León Ruales ECUADOR Unidad Educativa Nacional Napo ECUADOR Unidad Educativa Temporal Camilo Gallegos Dominguez ECUADOR Unidad Educativa Temporal Manuel Córdova Galarza ECUADOR Primary Years Programme Campus International School, UNITED STATES Carl Hankey K-8 School UNITED STATES Christa McAuliffe Elementary School UNITED STATES Goethe International Charter School , UNITED STATES Hammond Eastside Elementary Magnet School, UNITED STATES Hawthorne Elementary School UNITED STATES Idlewild Elementary School, UNITED STATES J. Colin English Elementary UNITED STATES Jose de Escandon Elementary, UNITED STATES Lincoln Elementary School, UNITED STATES Qingdao Amerasia International School CHINA Roland Park K-8 Magnet School for International Studies, UNITED STATES Theodore Roosevelt Elementary School, UNITED STATES Woodrow Wilson Elementary UNITED STATES Middle Years Programme Cache La Poudre Middle School, UNITED STATES Carl Hankey K-8 School, UNITED STATES Cedar Shoals High School UNITED STATES Concord High School, UNITED STATES Harry Stone Montessori Academy, UNITED STATES International School of Monterey, UNITED STATES Johnnie R. Carr Middle School, UNITED STATES Prairie Seeds Academy, UNITED STATES Roland Park K-8 Magnet School, UNITED STATES Sterling Middle School UNITED STATES The Aga Khan Academy, Hyderabad, INDIA Diploma Programme Ausangate Bilingual School PERU Author’s School Istochnik RUSSIAN FEDERATION Colegio Fiscal Técnico El Chaco ECUADOR Colegio Juan Bautista Montini ECUADOR Colegio Nacional Ciudad de Cuenca ECUADOR Colegio Nacional Experimental Salcedo, ECUADOR Colegio Nacional Machachi, ECUADOR Colegio Nacional Mixto El Playon, ECUADOR Colegio Técnico Cascales, ECUADOR Dar al Marefa Private School, UNITED ARAB EMIRATES Escola Internacional del Camp SPAIN Gymnasium Jovan Jovanovic Zmaj SERBIA ISTEK Private Acibadem Schools TURKEY Instituto Superior Tecnológico Carlos Cisneros ECUADOR Instituto Superior Tecnológico Daniel Alvarez Burneo ECUADOR Instituto Técnico Superior Isabel de Godin ECUADOR King Abdulaziz Saudi School Rome ITALY Riga State Gymnasium Nr. 2 LATVIA Saudi School Vienna AUSTRIA State IS Seeheim Jugenheim/Schuldorf Bergstrasse GERMANY Unidad Educativa Bolívar, ECUADOR Unidad Educativa Abelardo Moncayo, ECUADOR Unidad Educativa Fiscomisional Verbo Divino, ECUADOR Unidad Educativa Mayor ECUADOR Unidad Educativa Nueva Semilla, ECUADOR Unidad Educativa Temporal Juan Bautista Vásquez, ECUADOR Primary Years Programme Ajman Academy UNITED ARAB EMIRATES British International School Kiev UKRAINE Cache La Poudre Elementary School, UNITED STATES Dr. Thomas S. O Connell Elementary School UNITED STATES Gems World Academy Abu Dhabi UNITED ARAB EMIRATES Hebron-Harman Elementary School, UNITED STATES International School of Solothurn, SWITZERLAND Lisa-Junior Primary School AUSTRIA Madison Richard Simis Elementary School, UNITED STATES Miina Härma Gümnaasium, ESTONIA Riffenburgh Elementary School UNITED STATES Roscoe Wilson Elementary School, UNITED STATES Singapore International School INDIA William H. Wharton K-8 Dual Language Academy UNITED STATES World Academy of Tirana, ALBANIA École Centrale, CANADA École Micheline-Brodeur CANADA École Saint-Édouard, CANADA École élémentaire catholique Jean-Paul II CANADA Özel Istanbul Coskun Koleji Anaokulu & Ilkokulu TURKEY Middle Years Programme Abraham Lincoln Middle School UNITED STATES Beijing Huijia Private School CHINA Cakir Middle School TURKEY Durango High School UNITED STATES Emirates IS Meadows, UNITED ARAB EMIRATES Madison International School, MEXICO Meadow Park Middle School, UNITED STATES North Central High School, UNITED STATES Phuket International Academy Day School THAILAND Ray Wiltsey Middle School UNITED STATES Rockridge Secondary School CANADA School Lane Charter School UNITED STATES Strothoff International School Rhein-Main Campus Dreieich GERMANY Tsukuba International School JAPAN École Père-Marquette, CANADA École secondaire Saint-Luc, CANADA Diploma Programme Anania Shirakatsy Armenian National Lyceum Ed’l Complex-CJSC, ARMENIA COLEGIO ALAUDA SPAIN Colegio Británico, MEXICO Colegio Nacional Camilo Gallegos Toledo ECUADOR Colegio Nacional Experimental Amazonas, ECUADOR Colegio Nacional Experimental María Angélica Idrobo, ECUADOR Colegio Nacional San José, ECUADOR Eastern Mediterranean International School, ISRAEL Emirates National School UNITED ARAB EMIRATES GEMS American Academy Abu Dhabi, UNITED ARAB EMIRATES German International School Sharjah UNITED ARAB EMIRATES Instituto Tecnológico Superior Angel Polibio Chaves, ECUADOR International School Moshi Arusha Campus TANZANIA, UNITED REPUBLIC OF International School of Bydgoszcz POLAND Ludoteca Elementary & High School, Padre Víctor Grados, ECUADOR Léman International School Chengdu CHINA Metropolitan School of Panama, PANAMA Munic. Atms. Educ. Institution Kogalym Secondary School ?8, RUSSIAN FEDERATION Phorms Bilingual Gymnasium, GERMANY Royal High School, UNITED STATES SIS Swiss International School Stuttgart-Fellbach, GERMANY Seedling Public School INDIA The British School of Beijing CHINA Unidad Educativa Fiscal Experimental del Milenio, ECUADOR Unidad Educativa Juan de Velasco ECUADOR Unidad Educativa Tumbaco, ECUADOR École secondaire Gaétan Gervais, CANADA École secondaire Hanmer CANADA Stonehill International School American School of Bombay Mumbai Day school offering PYP MYP DP Dhirubhai Ambani International School Mumbai Day school offering DP Ecole Mondiale World School, Mumbai Day school offering DP Jamnabai Narsee School Mumbai Day school offering DP Ahmedabad International School Ahmedabad Day School offering PYP Mahatma Gandhi International School Ahmedabad Day school offering MYP Mahindra United World College of India Pune Boarding school offering DP Mercedes-Benz International School Pune American Embassy School Delhi Day school offering DP The British School, Delhi Day school offering DP Pathways World School, Gurgaon Boarding school offering PYP DP SelaQui World School, Dehra Dun Boarding school offering DP Canadian International School, Bangalore Mixed Boarding Day school offering DP International School of Bangalore, Bangalore Mixed Boarding Day school offering DP Oakridge International School Hyderabad Day school offering PYP Chinmaya International Residential School Coimbatore Boarding school offering DP Good Shepherd International School Ooty Boarding school offering DP Kodaikanal International School, Kodaikanal Boarding school offering DP Home Tuition Group teachers available small groupsstudents IB International Baccalaureate Programme, IGCSE, ISc, ICSE, CBSE Schools offering IB ( International Baccalaureate ) Programme Bangalore International School Geddalahalli Hennur Bagalur Road Kothanur Post Bengaluru India 560 077 Stonehill International School, 1st Floor, Embassy Point #150, Infantry Road Bengaluru 560 001 Stonehill International School 259/333/334/335 Tarahunise Post Jala Hobli, Bengaluru North 562157 Candor International School Begur Koppa Road, Hullahalli Off Bannerghatta Road, Near Electronic City Bangalore 560105 Greenwood High International School Bengaluru, No.8-14, Chickkawadayarapura, Near Heggondahalli Gunjur Post, Varthur Sarjapur Road, Bangalore 560087 Sarla Birla Academy, Bannerghatta, Bangalore, Canadian International School, Yelahanka, Bangalore Indus International School Billapura Cross Sarjapur Bangalore

Leave a comment